arch.univariate.EGARCH¶
- class
arch.univariate.EGARCH(p=1, o=0, q=1)[source]¶ EGARCH model estimation
- Parameters
Examples
>>> from arch.univariate import EGARCH
Symmetric EGARCH(1,1)
>>> egarch = EGARCH(p=1, q=1)
Standard EGARCH process
>>> egarch = EGARCH(p=1, o=1, q=1)
Exponential ARCH process
>>> earch = EGARCH(p=5)
Notes
In this class of processes, the variance dynamics are
\[\ln\sigma_{t}^{2}=\omega +\sum_{i=1}^{p}\alpha_{i} \left(\left|e_{t-i}\right|-\sqrt{2/\pi}\right) +\sum_{j=1}^{o}\gamma_{j} e_{t-j} +\sum_{k=1}^{q}\beta_{k}\ln\sigma_{t-k}^{2}\]where \(e_{t}=\epsilon_{t}/\sigma_{t}\).
Methods
backcast(resids)Construct values for backcasting to start the recursion
backcast_transform(backcast)Transformation to apply to user-provided backcast values
bounds(resids)Returns bounds for parameters
compute_variance(parameters, resids, sigma2, ...)Compute the variance for the ARCH model
Construct parameter constraints arrays for parameter estimation
forecast(parameters, resids, backcast, ...)Forecast volatility from the model
Names of model parameters
simulate(parameters, nobs, rng[, burn, ...])Simulate data from the model
starting_values(resids)Returns starting values for the ARCH model
variance_bounds(resids[, power])Construct loose bounds for conditional variances.
Properties
The name of the volatilty process
Index to use to start variance subarray selection
Index to use to stop variance subarray selection