arch.univariate.HARCH¶
- class
arch.univariate.HARCH(lags=1)[source]¶ Heterogeneous ARCH process
- Parameters
lags ({list, array, int}) -- List of lags to include in the model, or if scalar, includes all lags up the value
Examples
>>> from arch.univariate import HARCH
Lag-1 HARCH, which is identical to an ARCH(1)
>>> harch = HARCH()
More useful and realistic lag lengths
>>> harch = HARCH(lags=[1, 5, 22])
Notes
In a Heterogeneous ARCH process, variance dynamics are
\[\sigma_{t}^{2}=\omega + \sum_{i=1}^{m}\alpha_{l_{i}} \left(l_{i}^{-1}\sum_{j=1}^{l_{i}}\epsilon_{t-j}^{2}\right)\]In the common case where lags=[1,5,22], the model is
\[\sigma_{t}^{2}=\omega+\alpha_{1}\epsilon_{t-1}^{2} +\alpha_{5} \left(\frac{1}{5}\sum_{j=1}^{5}\epsilon_{t-j}^{2}\right) +\alpha_{22} \left(\frac{1}{22}\sum_{j=1}^{22}\epsilon_{t-j}^{2}\right)\]A HARCH process is a special case of an ARCH process where parameters in the more general ARCH process have been restricted.
Methods
backcast(resids)Construct values for backcasting to start the recursion
backcast_transform(backcast)Transformation to apply to user-provided backcast values
bounds(resids)Returns bounds for parameters
compute_variance(parameters, resids, sigma2, ...)Compute the variance for the ARCH model
Construct parameter constraints arrays for parameter estimation
forecast(parameters, resids, backcast, ...)Forecast volatility from the model
Names of model parameters
simulate(parameters, nobs, rng[, burn, ...])Simulate data from the model
starting_values(resids)Returns starting values for the ARCH model
variance_bounds(resids[, power])Construct loose bounds for conditional variances.
Properties
The name of the volatilty process
Index to use to start variance subarray selection
Index to use to stop variance subarray selection