arch.univariate.HARX¶
- class
arch.univariate.
HARX
(y=None, x=None, lags=None, constant=True, use_rotated=False, hold_back=None, volatility=None, distribution=None, rescale=None)[source]¶ Heterogeneous Autoregression (HAR), with optional exogenous regressors, model estimation and simulation
- Parameters
y ({ndarray, Series}) -- nobs element vector containing the dependent variable
x ({ndarray, DataFrame}, optional) -- nobs by k element array containing exogenous regressors
lags ({scalar, ndarray}, optional) -- Description of lag structure of the HAR. Scalar included all lags between 1 and the value. A 1-d array includes the HAR lags 1:lags[0], 1:lags[1], ... A 2-d array includes the HAR lags of the form lags[0,j]:lags[1,j] for all columns of lags.
constant (bool, optional) -- Flag whether the model should include a constant
use_rotated (bool, optional) -- Flag indicating to use the alternative rotated form of the HAR where HAR lags do not overlap
hold_back (int) -- Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.
volatility (VolatilityProcess, optional) -- Volatility process to use in the model
distribution (Distribution, optional) -- Error distribution to use in the model
rescale (bool, optional) -- Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results.
Examples
>>> import numpy as np >>> from arch.univariate import HARX >>> y = np.random.randn(100) >>> harx = HARX(y, lags=[1, 5, 22]) >>> res = harx.fit()
>>> from pandas import Series, date_range >>> index = date_range('2000-01-01', freq='M', periods=y.shape[0]) >>> y = Series(y, name='y', index=index) >>> har = HARX(y, lags=[1, 6], hold_back=10)
Notes
The HAR-X model is described by
\[y_t = \mu + \sum_{i=1}^p \phi_{L_{i}} \bar{y}_{t-L_{i,0}:L_{i,1}} + \gamma' x_t + \epsilon_t\]where \(\bar{y}_{t-L_{i,0}:L_{i,1}}\) is the average value of \(y_t\) between \(t-L_{i,0}\) and \(t - L_{i,1}\).
Methods
bounds
()Construct bounds for parameters to use in non-linear optimization
compute_param_cov
(params[, backcast, robust])Computes parameter covariances using numerical derivatives.
Construct linear constraint arrays for use in non-linear optimization
fit
([update_freq, disp, starting_values, ...])Fits the model given a nobs by 1 vector of sigma2 values
fix
(params[, first_obs, last_obs])Allows an ARCHModelFixedResult to be constructed from fixed parameters.
forecast
(params[, horizon, start, align, ...])Construct forecasts from estimated model
List of parameters names
resids
(params[, y, regressors])Compute model residuals
simulate
(params, nobs[, burn, ...])Simulates data from a linear regression, AR or HAR models
Returns starting values for the mean model, often the same as the values returned from fit
Properties
Set or gets the error distribution
The name of the model.
Returns the number of parameters
Set or gets the volatility process
Gets the value of the exogenous regressors in the model
Returns the dependent variable