arch.univariate.MIDASHyperbolic¶
- class
arch.univariate.
MIDASHyperbolic
(m=22, asym=False)[source]¶ MIDAS Hyperbolic ARCH process
- Parameters
Examples
>>> from arch.univariate import MIDASHyperbolic
22-lag MIDAS Hyperbolic process
>>> harch = MIDASHyperbolic()
Longer 66-period lag
>>> harch = MIDASHyperbolic(m=66)
Asymmetric MIDAS Hyperbolic process
>>> harch = MIDASHyperbolic(asym=True)
Notes
In a MIDAS Hyperbolic process, the variance evolves according to
\[\sigma_{t}^{2}=\omega+ \sum_{i=1}^{m}\left(\alpha+\gamma I\left[\epsilon_{t-j}<0\right]\right) \phi_{i}(\theta)\epsilon_{t-i}^{2}\]where
\[\phi_{i}(\theta) \propto \Gamma(i+\theta)/(\Gamma(i+1)\Gamma(\theta))\]where \(\Gamma\) is the gamma function. \(\{\phi_i(\theta)\}\) is normalized so that \(\sum \phi_i(\theta)=1\)
References
- *
Foroni, Claudia, and Massimiliano Marcellino. "A survey of Econometric Methods for Mixed-Frequency Data". Norges Bank. (2013).
- †
Sheppard, Kevin. "Direct volatility modeling". Manuscript. (2018).
Methods
backcast
(resids)Construct values for backcasting to start the recursion
backcast_transform
(backcast)Transformation to apply to user-provided backcast values
bounds
(resids)Returns bounds for parameters
compute_variance
(parameters, resids, sigma2, ...)Compute the variance for the ARCH model
Constraints
forecast
(parameters, resids, backcast, ...)Forecast volatility from the model
Names of model parameters
simulate
(parameters, nobs, rng[, burn, ...])Simulate data from the model
starting_values
(resids)Returns starting values for the ARCH model
variance_bounds
(resids[, power])Construct loose bounds for conditional variances.
Properties
The name of the volatilty process
Index to use to start variance subarray selection
Index to use to stop variance subarray selection