Source code for arch.univariate.mean

"""
Mean models to use with ARCH processes.  All mean models must inherit from
:class:`ARCHModel` and provide the same methods with the same inputs.
"""

from __future__ import annotations

from collections.abc import Mapping, Sequence
import copy
from typing import TYPE_CHECKING, Callable, cast

import numpy as np
import pandas as pd
from scipy.optimize import OptimizeResult
from statsmodels.tsa.tsatools import lagmat

from arch.typing import (
    ArrayLike,
    ArrayLike1D,
    ArrayLike2D,
    DateLike,
    Float64Array,
    ForecastingMethod,
    Int32Array,
    Int64Array,
    Label,
    NDArray,
)
from arch.univariate.base import (
    ARCHModel,
    ARCHModelForecast,
    ARCHModelResult,
    _callback_info,
    implicit_constant,
)
from arch.univariate.distribution import (
    Distribution,
    GeneralizedError,
    Normal,
    SkewStudent,
    StudentsT,
)

if TYPE_CHECKING:
    # Fake path to satisfy mypy
    from arch.univariate.recursions_python import ARCHInMeanRecursion, VolatilityUpdater
else:
    try:
        from arch.univariate.recursions import ARCHInMeanRecursion, VolatilityUpdater
    except ImportError:  # pragma: no cover
        from arch.univariate.recursions_python import (
            ARCHInMeanRecursion,
            VolatilityUpdater,
        )

from functools import cached_property

from arch.typing import Literal
from arch.univariate.volatility import (
    APARCH,
    ARCH,
    EGARCH,
    FIGARCH,
    GARCH,
    HARCH,
    ConstantVariance,
    VolatilityProcess,
)
from arch.utility.array import (
    AbstractDocStringInheritor,
    cutoff_to_index,
    ensure1d,
    parse_dataframe,
)

__all__ = ["HARX", "ConstantMean", "ZeroMean", "ARX", "arch_model", "LS", "ARCHInMean"]

COV_TYPES = {
    "white": "White's Heteroskedasticity Consistent Estimator",
    "classic_ols": "Homoskedastic (Classic)",
    "robust": "Bollerslev-Wooldridge (Robust) Estimator",
    "mle": "ML Estimator",
    "classic": "ML Estimator",
}


def _forecast_pad(count: int, forecasts: Float64Array) -> Float64Array:
    shape = list(forecasts.shape)
    shape[0] = count
    fill = np.full(tuple(shape), np.nan)
    return np.concatenate((fill, forecasts))


def _ar_forecast(
    y: Float64Array,
    horizon: int,
    start_index: int,
    constant: float,
    arp: Float64Array,
    x: Float64Array,
    exogp: Float64Array,
) -> Float64Array:
    """
    Generate mean forecasts from an AR-X model

    Parameters
    ----------
    y : ndarray
    horizon : int
    start_index : int
    constant : float
    arp : ndarray
    exogp : ndarray
    x : ndarray

    Returns
    -------
    forecasts : ndarray
    """
    t = y.shape[0]
    p = arp.shape[0]
    fcasts = np.empty((t - start_index, p + horizon))
    for i in range(p):
        first = start_index - p + i + 1
        last = t - p + i + 1
        fcasts[:, i] = y[first:last]
    arp_rev = arp[::-1]
    for i in range(p, horizon + p):
        fcasts[:, i] = constant + fcasts[:, i - p : i].dot(arp_rev)
        if x.shape[0] > 0:
            fcasts[:, i] += x[:, :, i - p].T @ exogp
    fcasts = fcasts[:, p:]

    return fcasts


def _ar_to_impulse(steps: int, params: Float64Array) -> Float64Array:
    p = params.shape[0]
    impulse = np.zeros(steps)
    impulse[0] = 1
    if p == 0:
        return impulse

    for i in range(1, steps):
        k = min(p - 1, i - 1)
        st = max(i - p, 0)
        impulse[i] = impulse[st:i].dot(params[k::-1])

    return impulse


[docs] class HARX(ARCHModel, metaclass=AbstractDocStringInheritor): r""" Heterogeneous Autoregression (HAR), with optional exogenous regressors, model estimation and simulation Parameters ---------- y : {ndarray, Series} nobs element vector containing the dependent variable x : {ndarray, DataFrame}, optional nobs by k element array containing exogenous regressors lags : {scalar, ndarray}, optional Description of lag structure of the HAR. * Scalar included all lags between 1 and the value. * A 1-d n-element array includes the HAR lags 1:lags[0]+1, 1:lags[1]+1, ... 1:lags[n]+1. * A 2-d (2,n)-element array that includes the HAR lags of the form lags[0,j]:lags[1,j]+1 for all columns of lags. constant : bool, optional Flag whether the model should include a constant use_rotated : bool, optional Flag indicating to use the alternative rotated form of the HAR where HAR lags do not overlap hold_back : int Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample. volatility : VolatilityProcess, optional Volatility process to use in the model distribution : Distribution, optional Error distribution to use in the model rescale : bool, optional Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results. Examples -------- Standard HAR with average lags 1, 5 and 22 >>> import numpy as np >>> from arch.univariate import HARX >>> y = np.random.RandomState(1234).randn(100) >>> harx = HARX(y, lags=[1, 5, 22]) >>> res = harx.fit() A standard HAR with average lags 1 and 6 but holding back 10 observations >>> from pandas import Series, date_range >>> index = date_range('2000-01-01', freq='M', periods=y.shape[0]) >>> y = Series(y, name='y', index=index) >>> har = HARX(y, lags=[1, 6], hold_back=10) Models with equivalent parametrizations of lags. The first uses overlapping lags. >>> harx_1 = HARX(y, lags=[1,5,22]) The next uses rotated lags so that they do not overlap. >>> harx_2 = HARX(y, lags=[1,5,22], use_rotated=True) The third manually specified overlapping lags. >>> harx_3 = HARX(y, lags=[[1, 1, 1], [1, 5, 22]]) The final manually specified non-overlapping lags >>> harx_4 = HARX(y, lags=[[1, 2, 6], [1, 5, 22]]) It is simple to verify that these are the equivalent by inspecting the R2. >>> models = [harx_1, harx_2, harx_3, harx_4] >>> print([mod.fit().rsquared for mod in models]) 0.085, 0.085, 0.085, 0.085 Notes ----- The HAR-X model is described by .. math:: y_t = \mu + \sum_{i=1}^p \phi_{L_{i}} \bar{y}_{t-L_{i,0}:L_{i,1}} + \gamma' x_t + \epsilon_t where :math:`\bar{y}_{t-L_{i,0}:L_{i,1}}` is the average value of :math:`y_t` between :math:`t-L_{i,0}` and :math:`t - L_{i,1}`. """ # To allow for addition mean parameters in simulation _extra_simulation_params: int = 0 def __init__( self, y: ArrayLike | None = None, x: ArrayLike2D | None = None, lags: ( None | int | Sequence[int] | Sequence[Sequence[int]] | Int32Array | Int64Array ) = None, constant: bool = True, use_rotated: bool = False, hold_back: int | None = None, volatility: VolatilityProcess | None = None, distribution: Distribution | None = None, rescale: bool | None = None, ) -> None: super().__init__( y, hold_back=hold_back, volatility=volatility, distribution=distribution, rescale=rescale, ) self._x = x self._x_names: list[str] = [] self._x_index: None | NDArray | pd.Index = None self.lags: ( None | int | Sequence[int] | Sequence[Sequence[int]] | Int32Array | Int64Array ) = lags self._lags = np.empty((0, 0)) self.constant: bool = constant self.use_rotated: bool = use_rotated self.regressors: Float64Array = np.empty((0, 0), dtype=np.float64) self._name = "HAR" if self._x is not None: self._name += "-X" if lags is not None: max_lags = int(np.max(np.asarray(lags, dtype=np.int32))) else: max_lags = 0 self._max_lags = max_lags self._hold_back = max_lags if hold_back is None else hold_back if self._hold_back < max_lags: from warnings import warn warn( "hold_back is less then the minimum number given the lags selected", RuntimeWarning, ) self._hold_back = max_lags self._init_model() def _scale_changed(self): """ Called when the scale has changed. This allows the model to update any values that are affected by the scale changes, e.g., any logged values. """ # Reinitialize the model self._init_model() @property def x(self) -> ArrayLike2D | None: """Gets the value of the exogenous regressors in the model""" return self._x
[docs] def parameter_names(self) -> list[str]: return self._generate_variable_names()
def _model_description(self, include_lags: bool = True) -> dict[str, str]: """Generates the model description for use by __str__ and related functions""" lagstr = "none" if include_lags and self.lags is not None: assert self._lags is not None lagstr_comp = [f"[{lag[0]}:{lag[1]}]" for lag in self._lags.T] lagstr = ", ".join(lagstr_comp) xstr = str(self._x.shape[1]) if self._x is not None else "0" conststr = "yes" if self.constant else "no" od = {"constant": conststr} if include_lags: od["lags"] = lagstr od["no. of exog"] = xstr od["volatility"] = self.volatility.__str__() od["distribution"] = self.distribution.__str__() return od def __str__(self) -> str: descr = self._model_description() descr_str = self.name + "(" for key, val in descr.items(): if val and key: descr_str += key + ": " + val + ", " descr_str = descr_str[:-2] # Strip final ', ' descr_str += ")" return descr_str def __repr__(self) -> str: txt = self.__str__() txt.replace("\n", "") return txt + ", id: " + hex(id(self)) def _repr_html_(self) -> str: """HTML representation for IPython Notebook""" descr = self._model_description() html = "<strong>" + self.name + "</strong>(" for key, val in descr.items(): html += "<strong>" + key + ": </strong>" + val + ",\n" html += "<strong>ID: </strong> " + hex(id(self)) + ")" return html
[docs] def resids( self, params: Float64Array, y: ArrayLike1D | None = None, regressors: ArrayLike2D | None = None, ) -> ArrayLike1D: regressors = self._fit_regressors if y is None else regressors y = self._fit_y if y is None else y assert regressors is not None return y - np.asarray(regressors, dtype=float).dot(params)
@cached_property def num_params(self) -> int: """ Returns the number of parameters """ assert self.regressors is not None return int(self.regressors.shape[1]) def _simulate_mean( self, parameters: Float64Array, x: Float64Array, errors: Float64Array, initial_value: None | float | Float64Array, conditional_variance: Float64Array, ) -> Float64Array: max_lag = 0 if not self._lags.size else int(np.max(self._lags)) nobs_and_burn = errors.shape[0] y = np.zeros(nobs_and_burn) if initial_value is None: initial_value = 0.0 elif not np.isscalar(initial_value): initial_value = np.asarray( ensure1d(initial_value, "initial_value"), dtype=float ) if initial_value.shape[0] != max_lag: raise ValueError( f"initial_value has the wrong shape. Expected {max_lag} values" ) y[:max_lag] = initial_value k_x = x.shape[1] for t in range(max_lag, nobs_and_burn): ind = 0 if self.constant: y[t] = parameters[ind] ind += 1 for lag in self._lags.T: y[t] += parameters[ind] * y[t - lag[1] : t - lag[0]].mean() ind += 1 for i in range(k_x): y[t] += parameters[ind] * x[t, i] ind += 1 y[t] += errors[t] return y
[docs] def simulate( self, params: ArrayLike1D | Sequence[float], nobs: int, burn: int = 500, initial_value: None | float | Float64Array = None, x: ArrayLike | None = None, initial_value_vol: None | float | Float64Array = None, ) -> pd.DataFrame: """ Simulates data from a linear regression, AR or HAR models Parameters ---------- params : array_like Parameters to use when simulating the model. Parameter order is [mean volatility distribution] where the parameters of the mean model are ordered [constant lag[0] lag[1] ... lag[p] ex[0] ... ex[k-1]] where lag[j] indicates the coefficient on the jth lag in the model and ex[j] is the coefficient on the jth exogenous variable. nobs : int Length of series to simulate burn : int, optional Number of values to simulate to initialize the model and remove dependence on initial values. initial_value : {ndarray, float}, optional Either a scalar value or `max(lags)` array set of initial values to use when initializing the model. If omitted, 0.0 is used. x : {ndarray, DataFrame}, optional nobs + burn by k array of exogenous variables to include in the simulation. initial_value_vol : {ndarray, float}, optional An array or scalar to use when initializing the volatility process. Returns ------- simulated_data : DataFrame DataFrame with columns data containing the simulated values, volatility, containing the conditional volatility and errors containing the errors used in the simulation Examples -------- >>> import numpy as np >>> from arch.univariate import HARX, GARCH >>> harx = HARX(lags=[1, 5, 22]) >>> harx.volatility = GARCH() >>> harx_params = np.array([1, 0.2, 0.3, 0.4]) >>> garch_params = np.array([0.01, 0.07, 0.92]) >>> params = np.concatenate((harx_params, garch_params)) >>> sim_data = harx.simulate(params, 1000) Simulating models with exogenous regressors requires the regressors to have nobs plus burn data points >>> nobs = 100 >>> burn = 200 >>> x = np.random.randn(nobs + burn, 2) >>> x_params = np.array([1.0, 2.0]) >>> params = np.concatenate((harx_params, x_params, garch_params)) >>> sim_data = harx.simulate(params, nobs=nobs, burn=burn, x=x) """ if x is None: x = np.empty((nobs + burn, 0)) else: x = np.asarray(x) k_x = x.shape[1] if x.shape[0] != nobs + burn: raise ValueError("x must have nobs + burn rows") assert self._lags is not None mc = ( int(self.constant) + self._lags.shape[1] + k_x + self._extra_simulation_params ) vc = self.volatility.num_params dc = self.distribution.num_params num_params = mc + vc + dc params = cast(Float64Array, ensure1d(params, "params", series=False)) if params.shape[0] != num_params: raise ValueError( "params has the wrong number of elements. " "Expected " + str(num_params) + ", got " + str(params.shape[0]) ) dist_params = np.empty(0) if dc == 0 else params[-dc:] vol_params = params[mc : mc + vc] simulator = self.distribution.simulate(dist_params) sim_data = self.volatility.simulate( vol_params, nobs + burn, simulator, burn, initial_value_vol ) errors = sim_data[0] vol = cast(Float64Array, np.sqrt(sim_data[1])) y = self._simulate_mean(params[:mc], x, errors, initial_value, sim_data[1]) df = dict(data=y[burn:], volatility=vol[burn:], errors=errors[burn:]) return pd.DataFrame(df)
def _generate_variable_names(self) -> list[str]: """Generates variable names or use in summaries""" variable_names = [] lags = self._lags if self.constant: variable_names.append("Const") if lags is not None and lags.size: variable_names.extend(self._generate_lag_names()) if self._x is not None: variable_names.extend(self._x_names) return variable_names def _generate_lag_names(self) -> list[str]: """Generates lag names. Overridden by other models""" lags = self._lags names = [] var_name = str(self._y_series.name) if self._y_series.name else "" if len(var_name) > 10: var_name = var_name[:4] + "..." + var_name[-3:] for i in range(lags.shape[1]): names.append(var_name + "[" + str(lags[0, i]) + ":" + str(lags[1, i]) + "]") return names def _check_specification(self) -> None: """Checks the specification for obvious errors""" if self._x is not None: if isinstance(self._x, pd.Series): self._x = pd.DataFrame(self._x) elif self._x.ndim == 1: self._x = np.asarray(self._x)[:, None] if self._x.ndim != 2 or self._x.shape[0] != self._y.shape[0]: raise ValueError( "x must be nobs by n, where nobs is the same as " "the number of elements in y" ) def_names = ["x" + str(i) for i in range(self._x.shape[1])] names, self._x_index = parse_dataframe(self._x, def_names) self._x_names = [str(name) for name in names] self._x = np.asarray(self._x) def _reformat_lags(self) -> None: """ Reformat input lags to be a 2 by m array, which simplifies other operations. Output is stored in _lags """ if self.lags is None: return lags = np.asarray(self.lags) if np.any(lags < 0): raise ValueError("Input to lags must be non-negative") if lags.ndim == 0: lags = np.arange(1, int(lags) + 1) if lags.ndim == 1: if np.any(lags <= 0): raise ValueError( "When using the 1-d format of lags, values must be positive" ) lags = np.unique(lags) temp = np.array([lags, lags]) if self.use_rotated: temp[0, 1:] = temp[0, 0:-1] temp[0, 0] = 0 else: temp[0, :] = 0 self._lags = temp elif lags.ndim == 2: if lags.shape[0] != 2: raise ValueError("When using a 2-d array, lags must by k by 2") if np.any(lags[0] <= 0) or np.any(lags[1] < lags[0]): raise ValueError( "When using a 2-d array, all values must be larger than 0 and " "lags[0,j] <= lags[1,j] for all lags values." ) ind = np.lexsort(np.flipud(lags)) lags = lags[:, ind] test_mat = np.zeros((lags.shape[1], np.max(lags))) # Subtract 1 so first is 0 indexed lags = lags - np.array([[1], [0]]) for i in range(lags.shape[1]): test_mat[i, lags[0, i] : lags[1, i]] = 1.0 rank = np.linalg.matrix_rank(test_mat) if rank != lags.shape[1]: raise ValueError("lags contains redundant entries") self._lags = lags if self.use_rotated: from warnings import warn warn("Rotation is not available when using the 2-d lags input format") else: raise ValueError("Incorrect format for lags") def _har_to_ar(self, params: Float64Array) -> Float64Array: if self._max_lags == 0: return params[: int(self.constant)] har = params[int(self.constant) :] ar = np.zeros(self._max_lags) for value, lag in zip(har, self._lags.T): ar[lag[0] : lag[1]] += value / (lag[1] - lag[0]) if self.constant: ar = np.concatenate((params[:1], ar)) return ar def _init_model(self) -> None: """Should be called whenever the model is initialized or changed""" self._reformat_lags() self._check_specification() nobs_orig = self._y.shape[0] if self.constant: reg_constant = np.ones((nobs_orig, 1), dtype=np.float64) else: reg_constant = np.ones((nobs_orig, 0), dtype=np.float64) if self.lags is not None and nobs_orig > 0: maxlag = np.max(self.lags) lag_array = lagmat(self._y, maxlag) reg_lags = np.empty((nobs_orig, self._lags.shape[1]), dtype=np.float64) for i, lags in enumerate(self._lags.T): reg_lags[:, i] = np.mean(lag_array[:, lags[0] : lags[1]], 1) else: reg_lags = np.empty((nobs_orig, 0), dtype=np.float64) if self._x is not None: reg_x = self._x else: reg_x = np.empty((nobs_orig, 0), dtype=np.float64) self.regressors = np.hstack((reg_constant, reg_lags, reg_x)) def _r2(self, params: ArrayLike1D) -> float: y = self._fit_y constant = False x = self._fit_regressors if x is not None and x.shape[1] > 0: constant = self.constant or implicit_constant(x) if constant: if x.shape[1] == 1: # Shortcut for constant only return 0.0 y = y - np.mean(y) tss = float(y.dot(y)) if tss <= 0.0: return np.nan e = np.asarray(self.resids(np.asarray(params, dtype=float)), dtype=float) return 1.0 - float(e.T.dot(e)) / tss def _adjust_sample( self, first_obs: None | int | DateLike, last_obs: None | int | DateLike, ) -> None: index = self._y_series.index _first_obs_index = cutoff_to_index(first_obs, index, 0) _first_obs_index += self._hold_back _last_obs_index = cutoff_to_index(last_obs, index, self._y.shape[0]) if _last_obs_index <= _first_obs_index: raise ValueError("first_obs and last_obs produce in an empty array.") self._fit_indices = [_first_obs_index, _last_obs_index] self._fit_y = self._y[_first_obs_index:_last_obs_index] reg = self.regressors self._fit_regressors = reg[_first_obs_index:_last_obs_index] self.volatility.start, self.volatility.stop = self._fit_indices def _fit_no_arch_normal_errors_params(self) -> Float64Array: """ Estimates model parameters excluding sigma2 Returns ------- params : ndarray Array of estimated parameters """ assert self._fit_y is not None nobs = self._fit_y.shape[0] if nobs < self.num_params: raise ValueError( "Insufficient data, " + str(self.num_params) + " regressors, " + str(nobs) + " data points available" ) x = self._fit_regressors y = self._fit_y return np.empty(0) if x.shape[1] == 0 else np.linalg.pinv(x).dot(y) def _fit_no_arch_normal_errors( self, cov_type: Literal["robust", "classic"] = "robust" ) -> ARCHModelResult: """ Estimates model parameters Parameters ---------- cov_type : str, optional Covariance estimator to use when estimating parameter variances and covariances. 'robust' for Whites's covariance estimator, or 'classic' for the classic estimator appropriate for homoskedastic data. 'robust' is the the default. Returns ------- result : ARCHModelResult Results class containing parameter estimates, estimated parameter covariance and related estimates Notes ----- See :class:`ARCHModelResult` for details on computed results """ assert self._fit_y is not None nobs = self._fit_y.shape[0] if nobs < self.num_params: raise ValueError( "Insufficient data, " + str(self.num_params) + " regressors, " + str(nobs) + " data points available" ) x = self._fit_regressors y = self._fit_y # Fake convergence results, see GH #87 opt = OptimizeResult({"status": 0, "message": ""}) if x.shape[1] > 0: regression_params = np.linalg.pinv(x).dot(y) xpxi = np.linalg.inv(x.T.dot(x) / nobs) fitted = x.dot(regression_params) else: regression_params = np.empty(0) xpxi = np.empty((0, 0)) fitted = 0.0 e = y - fitted sigma2 = e.T.dot(e) / nobs params = np.hstack((regression_params, sigma2)) hessian = np.zeros((self.num_params + 1, self.num_params + 1)) hessian[: self.num_params, : self.num_params] = -xpxi hessian[-1, -1] = -1 if cov_type in ("classic",): param_cov = sigma2 * -hessian param_cov[self.num_params, self.num_params] = 2 * sigma2**2.0 param_cov /= nobs cov_type_name = COV_TYPES["classic_ols"] elif cov_type in ("robust",): scores = np.zeros((nobs, self.num_params + 1)) scores[:, : self.num_params] = x * e[:, None] scores[:, -1] = e**2.0 - sigma2 score_cov = np.asarray(scores.T.dot(scores) / nobs) param_cov = (hessian @ score_cov @ hessian) / nobs cov_type_name = COV_TYPES["white"] else: raise ValueError("Unknown cov_type") r2 = self._r2(regression_params) first_obs, last_obs = self._fit_indices resids = np.empty_like(self._y, dtype=np.float64) resids.fill(np.nan) resids[first_obs:last_obs] = e vol = np.zeros_like(resids) vol.fill(np.nan) vol[first_obs:last_obs] = np.sqrt(sigma2) names = self._all_parameter_names() loglikelihood = self._static_gaussian_loglikelihood(e) # Throw away names in the case of starting values num_params = params.shape[0] if len(names) != num_params: names = ["p" + str(i) for i in range(num_params)] fit_start, fit_stop = self._fit_indices return ARCHModelResult( params, param_cov, r2, resids, vol, cov_type_name, self._y_series, names, loglikelihood, self._is_pandas, opt, fit_start, fit_stop, copy.deepcopy(self), ) def _reformat_forecast_x( self, x: None | dict[Label, ArrayLike] | ArrayLike, horizon: int, start: int, ) -> Float64Array: """ Always return a correctly formatted 3-d array Parameters ---------- x: dict[label, array_like], array_like, None The input data to reformat Returns ------- ndarray The 3-d array suitable for computing forecasts. Always has shape (nx, nobs - start, horizon). """ if x is None: if self._x is None: return np.empty(0) else: raise TypeError( "x is None but the model contains exogenous variables. You must " "provide expected values to use for the exogenous variables to " "construct forecasts." ) elif self._x is None: raise TypeError( "x is not None but the model does not contain any exogenous " "variables." ) assert self._x is not None nx = self._x.shape[1] if isinstance(x, Mapping): if len(x) != nx: raise ValueError( "x must have the same number of entries as the number of x " f"variables included in the model ({nx})" ) collected: list[Float64Array] = [] for key in self._x_names: if key not in x: keys = ", ".join([str(k) for k in x.keys()]) raise KeyError( "The keys of x must exactly match the variable names of " f"the included exogenous regressors. {key} not found in: " f"{keys}" ) temp = np.asarray(x[key], dtype=np.float64) if temp.ndim == 1: temp = temp.reshape((1, -1)) collected.append(temp) base_shape = collected[0].shape shapes = [v.shape == base_shape for v in collected] if not all(shapes): raise ValueError( "The shapes of the arrays contained in the dictionary differ. " "These must all be the same and satisfy the requirement for " "expected x values." ) if len(base_shape) != 2: raise ValueError( "The arrays contained in the dictionary must be 1 or 2-dimensional." ) arr: Float64Array = np.array(collected) else: arr = np.asarray(x) if arr.ndim == 1: arr = arr.reshape((1, -1)) if arr.ndim == 2: if nx != 1: raise ValueError( "1- and 2-dimensional x values can only be used when the " f"model has a single exogenous regressor. The model has {nx} " "exogenous regressors, and so you must use either a " "dictionary or a 3-dimensional NumPy array." ) arr = arr.reshape((1,) + arr.shape) if arr.shape[0] != self._x.shape[1]: raise ValueError( "The leading dimension of x must match the number of x variables " f"included in the model ({nx})" ) assert isinstance(arr, np.ndarray) if arr.shape[2] != horizon: raise ValueError( f"The number of values passed {arr.shape[2]} does not match the " f"horizon of the forecasts ({horizon})." ) possible_nobs = (self._y.shape[0], self._y.shape[0] - start) if arr.shape[1] not in possible_nobs: raise ValueError( "The shape of x does not satisfy the requirements for expected " "exogenous regressors. The number of values must either match " f"the original sample size ({self._y.shape[0]}) or the number of " f"forecasts ({self._y.shape[0] - start})." ) if arr.shape[1] > (self._y.shape[0] - start): arr = arr[:, start:] return arr
[docs] def forecast( self, params: ArrayLike1D, horizon: int = 1, start: None | int | DateLike = None, align: Literal["origin", "target"] = "origin", method: ForecastingMethod = "analytic", simulations: int = 1000, rng: Callable[[int | tuple[int, ...]], Float64Array] | None = None, random_state: np.random.RandomState | None = None, *, reindex: bool = False, x: None | dict[Label, ArrayLike] | ArrayLike = None, ) -> ARCHModelForecast: if not isinstance(horizon, (int, np.integer)) or horizon < 1: raise ValueError("horizon must be an integer >= 1.") # Check start earliest, default_start = self._fit_indices default_start = max(0, default_start - 1) start_index = cutoff_to_index(start, self._y_series.index, default_start) if start_index < (earliest - 1): raise ValueError( "Due to backcasting and/or data availability start cannot be less " "than the index of the largest value in the right-hand-side " "variables used to fit the first observation. In this model, " "this value is {}.".format(max(0, earliest - 1)) ) # Parse params params = np.asarray(params) mp, vp, dp = self._parse_parameters(params) ##################################### # Compute residual variance forecasts ##################################### # Back cast should use only the sample used in fitting resids = self.resids(mp) backcast = self._volatility.backcast(np.asarray(resids, dtype=float)) full_resids = np.asarray( self.resids(mp, self._y[earliest:], self.regressors[earliest:]), dtype=float ) vb = self._volatility.variance_bounds(full_resids, 2.0) if rng is None: rng = self._distribution.simulate(dp) variance_start = max(0, start_index - earliest) vfcast = self._volatility.forecast( vp, full_resids, backcast, vb, start=variance_start, horizon=horizon, method=method, simulations=simulations, rng=rng, random_state=random_state, ) var_fcasts = vfcast.forecasts assert var_fcasts is not None if start_index < earliest: # Pad if asking for variance forecast before earliest available var_fcasts = _forecast_pad(earliest - start_index, var_fcasts) arp = self._har_to_ar(mp) nexog = 0 if self._x is None else self._x.shape[1] exog_p = np.empty([]) if self._x is None else mp[-nexog:] constant = arp[0] if self.constant else 0.0 dynp = arp[int(self.constant) :] expected_x = self._reformat_forecast_x(x, horizon, start_index) mean_fcast = _ar_forecast( self._y, horizon, start_index, constant, dynp, expected_x, exog_p ) # Compute total variance forecasts, which depend on model impulse = _ar_to_impulse(horizon, dynp) longrun_var_fcasts = var_fcasts.copy() for i in range(horizon): lrf = var_fcasts[:, : (i + 1)].dot(impulse[i::-1] ** 2) longrun_var_fcasts[:, i] = lrf variance_paths: Float64Array | None = None mean_paths: Float64Array | None = None shocks: Float64Array | None = None long_run_variance_paths: Float64Array | None = None if method.lower() in ("simulation", "bootstrap"): # TODO: This is not tested, but probably right assert isinstance(vfcast.forecast_paths, np.ndarray) variance_paths = vfcast.forecast_paths assert isinstance(vfcast.shocks, np.ndarray) shocks = vfcast.shocks if start_index < earliest: # Pad if asking for variance forecast before earliest available variance_paths = _forecast_pad(earliest - start_index, variance_paths) shocks = _forecast_pad(earliest - start_index, shocks) long_run_variance_paths = variance_paths.copy() for i in range(horizon): _impulses = impulse[i::-1][:, None] lrvp = variance_paths[:, :, : (i + 1)].dot(_impulses**2) long_run_variance_paths[:, :, i] = np.squeeze(lrvp) t, m = self._y.shape[0], self._max_lags mean_paths = np.empty(shocks.shape[:2] + (m + horizon,)) dynp_rev = dynp[::-1] for i in range(start_index, t): path_loc = i - start_index mean_paths[path_loc, :, :m] = self._y[i - m + 1 : i + 1] for j in range(horizon): mean_paths[path_loc, :, m + j] = ( constant + mean_paths[path_loc, :, j : m + j].dot(dynp_rev) + shocks[path_loc, :, j] ) if expected_x.shape[0] > 0: mean_paths[path_loc, :, m + j] += ( expected_x[:, path_loc, j].T @ exog_p ) mean_paths = mean_paths[:, :, m:] index = self._y_series.index reindex = True if reindex is None else reindex return ARCHModelForecast( index, start_index, mean_fcast, longrun_var_fcasts, var_fcasts, align=align, simulated_paths=mean_paths, simulated_residuals=shocks, simulated_variances=long_run_variance_paths, simulated_residual_variances=variance_paths, reindex=reindex, )
[docs] class ConstantMean(HARX): r""" Constant mean model estimation and simulation. Parameters ---------- y : {ndarray, Series} nobs element vector containing the dependent variable hold_back : int Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample. volatility : VolatilityProcess, optional Volatility process to use in the model distribution : Distribution, optional Error distribution to use in the model rescale : bool, optional Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results. Examples -------- >>> import numpy as np >>> from arch.univariate import ConstantMean >>> y = np.random.randn(100) >>> cm = ConstantMean(y) >>> res = cm.fit() Notes ----- The constant mean model is described by .. math:: y_t = \mu + \epsilon_t """ def __init__( self, y: ArrayLike | None = None, hold_back: int | None = None, volatility: VolatilityProcess | None = None, distribution: Distribution | None = None, rescale: bool | None = None, ) -> None: super().__init__( y, hold_back=hold_back, volatility=volatility, distribution=distribution, rescale=rescale, ) self._name = "Constant Mean"
[docs] def parameter_names(self) -> list[str]: return ["mu"]
@cached_property def num_params(self) -> int: return 1 def _model_description(self, include_lags: bool = False) -> dict[str, str]: return super()._model_description(include_lags)
[docs] def simulate( self, params: ArrayLike1D | Sequence[float], nobs: int, burn: int = 500, initial_value: None | float | Float64Array = None, x: ArrayLike | None = None, initial_value_vol: None | float | Float64Array = None, ) -> pd.DataFrame: """ Simulated data from a constant mean model Parameters ---------- params : array_like Parameters to use when simulating the model. Parameter order is [mean volatility distribution]. There is one parameter in the mean model, mu. nobs : int Length of series to simulate burn : int, optional Number of values to simulate to initialize the model and remove dependence on initial values. initial_value : None This value is not used. x : None This value is not used. initial_value_vol : {ndarray, float}, optional An array or scalar to use when initializing the volatility process. Returns ------- simulated_data : DataFrame DataFrame with columns data containing the simulated values, volatility, containing the conditional volatility and errors containing the errors used in the simulation Examples -------- Basic data simulation with a constant mean and volatility >>> import numpy as np >>> from arch.univariate import ConstantMean, GARCH >>> cm = ConstantMean() >>> cm.volatility = GARCH() >>> cm_params = np.array([1]) >>> garch_params = np.array([0.01, 0.07, 0.92]) >>> params = np.concatenate((cm_params, garch_params)) >>> sim_data = cm.simulate(params, 1000) """ if initial_value is not None or x is not None: raise ValueError( "Both initial value and x must be none when " "simulating a constant mean process." ) mp, vp, dp = self._parse_parameters(params) sim_values = self.volatility.simulate( vp, nobs + burn, self.distribution.simulate(dp), burn, initial_value_vol ) errors = sim_values[0] y = errors + mp vol = np.sqrt(sim_values[1]) assert isinstance(vol, np.ndarray) df = dict(data=y[burn:], volatility=vol[burn:], errors=errors[burn:]) return pd.DataFrame(df)
[docs] def resids( self, params: Float64Array, y: ArrayLike1D | None = None, regressors: ArrayLike2D | None = None, ) -> ArrayLike1D: y = self._fit_y if y is None else np.asarray(y, dtype=np.float64) return y - params
[docs] class ZeroMean(HARX): r""" Model with zero conditional mean estimation and simulation Parameters ---------- y : {ndarray, Series} nobs element vector containing the dependent variable hold_back : int Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample. volatility : VolatilityProcess, optional Volatility process to use in the model distribution : Distribution, optional Error distribution to use in the model rescale : bool, optional Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results. Examples -------- >>> import numpy as np >>> from arch.univariate import ZeroMean >>> y = np.random.randn(100) >>> zm = ZeroMean(y) >>> res = zm.fit() Notes ----- The zero mean model is described by .. math:: y_t = \epsilon_t """ def __init__( self, y: ArrayLike | None = None, hold_back: int | None = None, volatility: VolatilityProcess | None = None, distribution: Distribution | None = None, rescale: bool | None = None, ) -> None: super().__init__( y, x=None, constant=False, hold_back=hold_back, volatility=volatility, distribution=distribution, rescale=rescale, ) self._name = "Zero Mean"
[docs] def parameter_names(self) -> list[str]: return []
@cached_property def num_params(self) -> int: return 0 def _model_description(self, include_lags: bool = False) -> dict[str, str]: return super()._model_description(include_lags)
[docs] def simulate( self, params: ArrayLike1D | Sequence[float], nobs: int, burn: int = 500, initial_value: None | float | Float64Array = None, x: ArrayLike | None = None, initial_value_vol: None | float | Float64Array = None, ) -> pd.DataFrame: """ Simulated data from a zero mean model Parameters ---------- params : {ndarray, DataFrame} Parameters to use when simulating the model. Parameter order is [volatility distribution]. There are no mean parameters. nobs : int Length of series to simulate burn : int, optional Number of values to simulate to initialize the model and remove dependence on initial values. initial_value : None This value is not used. x : None This value is not used. initial_value_vol : {ndarray, float}, optional An array or scalar to use when initializing the volatility process. Returns ------- simulated_data : DataFrame DataFrame with columns data containing the simulated values, volatility, containing the conditional volatility and errors containing the errors used in the simulation Examples -------- Basic data simulation with no mean and constant volatility >>> from arch.univariate import ZeroMean >>> import numpy as np >>> zm = ZeroMean() >>> params = np.array([1.0]) >>> sim_data = zm.simulate(params, 1000) Simulating data with a non-trivial volatility process >>> from arch.univariate import GARCH >>> zm.volatility = GARCH(p=1, o=1, q=1) >>> sim_data = zm.simulate([0.05, 0.1, 0.1, 0.8], 300) """ params = np.asarray(ensure1d(params, "params", False), dtype=float) if initial_value is not None or x is not None: raise ValueError( "Both initial value and x must be none when " "simulating a constant mean process." ) _, vp, dp = self._parse_parameters(params) sim_values = self.volatility.simulate( vp, nobs + burn, self.distribution.simulate(dp), burn, initial_value_vol ) errors = sim_values[0] y = errors vol = np.sqrt(sim_values[1]) assert isinstance(vol, np.ndarray) df = dict(data=y[burn:], volatility=vol[burn:], errors=errors[burn:]) return pd.DataFrame(df)
[docs] def resids( self, params: Float64Array, y: ArrayLike1D | None = None, regressors: ArrayLike2D | None = None, ) -> ArrayLike1D: if y is not None: return y assert self._fit_y is not None return self._fit_y
[docs] class ARX(HARX): r""" Autoregressive model with optional exogenous regressors estimation and simulation Parameters ---------- y : {ndarray, Series} nobs element vector containing the dependent variable x : {ndarray, DataFrame}, optional nobs by k element array containing exogenous regressors lags : scalar, 1-d array, optional Description of lag structure of the HAR. Scalar included all lags between 1 and the value. A 1-d array includes the AR lags lags[0], lags[1], ... constant : bool, optional Flag whether the model should include a constant hold_back : int Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample. volatility : VolatilityProcess, optional Volatility process to use in the model distribution : Distribution, optional Error distribution to use in the model rescale : bool, optional Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results. Examples -------- >>> import numpy as np >>> from arch.univariate import ARX >>> y = np.random.randn(100) >>> arx = ARX(y, lags=[1, 5, 22]) >>> res = arx.fit() Estimating an AR with GARCH(1,1) errors >>> from arch.univariate import GARCH >>> arx.volatility = GARCH() >>> res = arx.fit(update_freq=0, disp='off') Notes ----- The AR-X model is described by .. math:: y_t = \mu + \sum_{i=1}^p \phi_{L_{i}} y_{t-L_{i}} + \gamma' x_t + \epsilon_t """ def __init__( self, y: ArrayLike | None = None, x: ArrayLike2D | None = None, lags: None | int | list[int] | Int32Array | Int64Array = None, constant: bool = True, hold_back: int | None = None, volatility: VolatilityProcess | None = None, distribution: Distribution | None = None, rescale: bool | None = None, ) -> None: # Convert lags to 2-d format if lags is not None: lags_arr = np.asarray(lags) assert lags_arr is not None if lags_arr.ndim == 0: if lags_arr < 0: raise ValueError("lags must be a positive integer.") elif lags_arr == 0: lags = None else: lags_arr = np.arange(1, int(lags_arr) + 1) if lags is not None: if lags_arr.ndim != 1: raise ValueError("lags does not follow a supported format") else: lags_arr = np.vstack((lags_arr, lags_arr)) assert lags_arr is not None super().__init__( y, x, None if lags is None else lags_arr, constant, False, hold_back, volatility=volatility, distribution=distribution, rescale=rescale, ) self._name = "AR" if self._x is not None: self._name += "-X" def _model_description(self, include_lags: bool = True) -> dict[str, str]: """Generates the model description for use by __str__ and related functions""" lagstr = "none" if include_lags and self.lags is not None: assert self._lags is not None lagstr_comp = [str(lag[1]) for lag in self._lags.T] lagstr = ", ".join(lagstr_comp) xstr = str(self._x.shape[1]) if self._x is not None else "0" conststr = "yes" if self.constant else "no" od = {"constant": conststr} if include_lags: od["lags"] = lagstr od["no. of exog"] = xstr od["volatility"] = self.volatility.__str__() od["distribution"] = self.distribution.__str__() return od def _generate_lag_names(self) -> list[str]: lags = self._lags names = [] var_name = str(self._y_series.name) if self._y_series.name else "" if len(var_name) > 10: var_name = var_name[:4] + "..." + var_name[-3:] for i in range(lags.shape[1]): names.append(var_name + "[" + str(lags[1, i]) + "]") return names
[docs] class LS(HARX): r""" Least squares model estimation and simulation Parameters ---------- y : {ndarray, Series} nobs element vector containing the dependent variable y : {ndarray, DataFrame}, optional nobs by k element array containing exogenous regressors constant : bool, optional Flag whether the model should include a constant hold_back : int Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample. volatility : VolatilityProcess, optional Volatility process to use in the model distribution : Distribution, optional Error distribution to use in the model rescale : bool, optional Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results. Examples -------- >>> import numpy as np >>> from arch.univariate import LS >>> y = np.random.randn(100) >>> x = np.random.randn(100,2) >>> ls = LS(y, x) >>> res = ls.fit() Notes ----- The LS model is described by .. math:: y_t = \mu + \gamma' x_t + \epsilon_t """ def __init__( self, y: ArrayLike | None = None, x: ArrayLike2D | None = None, constant: bool = True, hold_back: int | None = None, volatility: VolatilityProcess | None = None, distribution: Distribution | None = None, rescale: bool | None = None, ) -> None: # Convert lags to 2-d format super().__init__( y, x, None, constant, False, hold_back=hold_back, volatility=volatility, distribution=distribution, rescale=rescale, ) self._name = "Least Squares"
[docs] class ARCHInMean(ARX): r""" (G)ARCH-in-mean model and simulation Parameters ---------- y : {ndarray, Series} nobs element vector containing the dependent variable x : {ndarray, DataFrame}, optional nobs by k element array containing exogenous regressors lags : {scalar, 1-d array}, optional Description of lag structure of the HAR. Scalar included all lags between 1 and the value. A 1-d array includes the AR lags lags[0], lags[1], ... constant : bool, optional Flag whether the model should include a constant hold_back : int, optional Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample. volatility : VolatilityProcess, optional Volatility process to use in the model. ``volatility.updateable`` must return ``True``. distribution : Distribution, optional Error distribution to use in the model rescale : bool, optional Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results. form : {"log", "vol", "var", int, float} The form of the conditional variance that appears in the mean equation. The string names use the log of the conditional variance ("log"), the square-root of the conditional variance ("vol") or the conditional variance. When specified using a float, interpreted as :math:`\sigma_t^{form}` so that 1 is equivalent to "vol" and 2 is equivalent to "var". When using a number, must be different from 0. Examples -------- >>> import numpy as np >>> from arch.univariate import ARCHInMean, GARCH >>> from arch.data.sp500 import load >>> sp500 = load() >>> rets = 100 * sp500["Adj Close"].pct_change().dropna() >>> gim = ARCHInMean(rets, lags=[1, 2], volatility=GARCH()) >>> res = gim.fit() Notes ----- The (G)arch-in-mean model with exogenous regressors (-X) is described by .. math:: y_t = \mu + \kappa f(\sigma^2_t)+ \sum_{i=1}^p \phi_{L_{i}} y_{t-L_{i}} + \gamma' x_t + \epsilon_t where :math:`f(\cdot)` is the function specified by ``form``. """ # To account for GIM param _extra_simulation_params = 1 def __init__( self, y: ArrayLike | None = None, x: ArrayLike2D | None = None, lags: None | int | list[int] | Int32Array | Int64Array = None, constant: bool = True, hold_back: int | None = None, volatility: VolatilityProcess | None = None, distribution: Distribution | None = None, rescale: bool | None = None, form: int | float | Literal["log", "vol", "var"] = "vol", ) -> None: super().__init__( y, x, lags, constant, hold_back, volatility, distribution, rescale ) self._name = "ARCH-in-mean" form_err = ( "form must be a floating point number of one of 'log', 'vol' or 'var', got " ) if not isinstance(form, (str, int, float, np.floating, np.integer)): raise TypeError(form_err + f"{type(form)}") if isinstance(form, str): lower_form = form.lower() if lower_form not in ("log", "vol", "var"): raise ValueError(form_err + f"{form}") self._form_id = {"log": 0, "vol": 1, "var": 2}[lower_form] self._form_power = float(self._form_id) else: float_form = float(form) if float_form == 0: raise ValueError( "When using a floating point number for form, its value " "must be different from 0" ) self._form_id = 3 self._form_power = float_form self._form = form if not self.volatility.updateable: raise ValueError( f"The volatility process {self.volatility.__class__} is not " "updateable. Only processes that have implemented the " "``update`` function and ``updateable`` returns True can be " "used with ``ARCHInMean``." ) self._volatility_updater: VolatilityUpdater = self.volatility.volatility_updater self._recursion = ARCHInMeanRecursion(self._volatility_updater) @property def form(self) -> int | float | Literal["log", "vol", "var"]: """The form of the conditional variance in the mean""" return self._form def _model_description(self, include_lags: bool = False) -> dict[str, str]: base_descr = super()._model_description(include_lags) keys = list(base_descr.keys()) descr = {key: base_descr[key] for key in keys[:-2]} if not isinstance(self._form, str): form = f"{float(self._form)} (numeric)" else: form = self._form descr["form"] = str(form) for key in keys[-2:]: descr[key] = base_descr[key] return descr def _generate_variable_names(self) -> list[str]: names = super()._generate_variable_names() return names + ["kappa"] @cached_property def num_params(self) -> int: assert self.regressors is not None return int(self.regressors.shape[1]) + 1
[docs] def forecast( self, params: ArrayLike1D, horizon: int = 1, start: None | int | DateLike = None, align: Literal["origin", "target"] = "origin", method: ForecastingMethod = "analytic", simulations: int = 1000, rng: Callable[[int | tuple[int, ...]], Float64Array] | None = None, random_state: np.random.RandomState | None = None, *, reindex: bool | None = None, x: None | dict[Label, ArrayLike] | ArrayLike = None, ) -> ARCHModelForecast: raise NotImplementedError( "forecasts are not implemented for (G)ARCH-in-mean models" )
[docs] def resids( self, params: Float64Array, y: ArrayLike1D | None = None, regressors: ArrayLike2D | None = None, ) -> ArrayLike1D: return super().resids(params[:-1], y=y, regressors=regressors)
[docs] def starting_values(self) -> Float64Array: return np.r_[super().starting_values(), 0.0]
def _loglikelihood( self, parameters: Float64Array, sigma2: Float64Array, backcast: float | Float64Array, var_bounds: Float64Array, individual: bool = False, ) -> float | Float64Array: # Parse parameters _callback_info["count"] += 1 nobs = sigma2.shape[0] # 1. Resids mp, vp, dp = self._parse_parameters(parameters) # 2. Initialize volatility update self._volatility_updater.initialize_update(vp, backcast, nobs) # 3. Compute recursions power = self._form_power / 2.0 resids = self._recursion.recursion( self._fit_y, self._fit_regressors, mp, vp, sigma2, var_bounds, power, ) # 3. Compute log likelihood using Distribution llf = self.distribution.loglikelihood(dp, resids, sigma2, individual) if not individual: _callback_info["llf"] = llf_f = -float(llf) return llf_f return cast(np.ndarray, -llf) def _simulate_mean( self, parameters: Float64Array, x: Float64Array, errors: Float64Array, initial_value: None | float | Float64Array, conditional_variance: Float64Array, ) -> Float64Array: """ Parameters ---------- parameters x errors initial_value conditional_variance Returns ------- """ if self._form_id == 0: trans_vol = np.log(conditional_variance) else: trans_vol = conditional_variance ** (self._form_power / 2) max_lag = 0 if not self._lags.size else int(np.max(self._lags)) nobs_and_burn = errors.shape[0] y = np.zeros(nobs_and_burn) if initial_value is None: initial_value = 0.0 elif not np.isscalar(initial_value): initial_value = np.asarray( ensure1d(initial_value, "initial_value"), dtype=float ) if initial_value.shape[0] != max_lag: raise ValueError( f"initial_value has the wrong shape. Expected {max_lag} values" ) y[:max_lag] = initial_value k_x = x.shape[1] for t in range(max_lag, nobs_and_burn): ind = 0 if self.constant: y[t] = parameters[ind] ind += 1 for lag in self._lags.T: y[t] += parameters[ind] * y[t - lag[1] : t - lag[0]].mean() ind += 1 for i in range(k_x): y[t] += parameters[ind] * x[t, i] ind += 1 y[t] += parameters[ind] * trans_vol[t] + errors[t] return y
[docs] def arch_model( y: ArrayLike | None, x: ArrayLike2D | None = None, mean: Literal[ "Constant", "Zero", "LS", "AR", "ARX", "HAR", "HARX", "constant", "zero" ] = "Constant", lags: None | int | list[int] | Int32Array | Int64Array = 0, vol: Literal[ "GARCH", "ARCH", "EGARCH", "FIGARCH", "APARCH", "HARCH", "FIGARCH" ] = "GARCH", p: int | list[int] = 1, o: int = 0, q: int = 1, power: float = 2.0, dist: Literal[ "normal", "gaussian", "t", "studentst", "skewstudent", "skewt", "ged", "generalized error", ] = "normal", hold_back: int | None = None, rescale: bool | None = None, ) -> HARX: """ Initialization of common ARCH model specifications Parameters ---------- y : ndarray, Series, None The dependent variable x : ndarray, DataFrame, optional Exogenous regressors. Ignored if model does not permit exogenous regressors. mean : str, optional Name of the mean model. Currently supported options are: 'Constant', 'Zero', 'LS', 'AR', 'ARX', 'HAR' and 'HARX' lags : int or list[int], optional Either a scalar integer value indicating lag length or a list of integers specifying lag locations. vol : str, optional Name of the volatility model. Currently supported options are: 'GARCH' (default), 'ARCH', 'EGARCH', 'FIGARCH', 'APARCH' and 'HARCH' p : int, optional Lag order of the symmetric innovation o : int, optional Lag order of the asymmetric innovation q : int, optional Lag order of lagged volatility or equivalent power : float, optional Power to use with GARCH and related models dist : int, optional Name of the error distribution. Currently supported options are: * Normal: 'normal', 'gaussian' (default) * Students's t: 't', 'studentst' * Skewed Student's t: 'skewstudent', 'skewt' * Generalized Error Distribution: 'ged', 'generalized error" hold_back : int Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample. rescale : bool Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results. Returns ------- model : ARCHModel Configured ARCH model Examples -------- >>> import datetime as dt >>> import pandas_datareader.data as web >>> djia = web.get_data_fred('DJIA') >>> returns = 100 * djia['DJIA'].pct_change().dropna() A basic GARCH(1,1) with a constant mean can be constructed using only the return data >>> from arch.univariate import arch_model >>> am = arch_model(returns) Alternative mean and volatility processes can be directly specified >>> am = arch_model(returns, mean='AR', lags=2, vol='harch', p=[1, 5, 22]) This example demonstrates the construction of a zero mean process with a TARCH volatility process and Student t error distribution >>> am = arch_model(returns, mean='zero', p=1, o=1, q=1, ... power=1.0, dist='StudentsT') Notes ----- Input that are not relevant for a particular specification, such as `lags` when `mean='zero'`, are silently ignored. """ am: ARCHModel known_mean = ("zero", "constant", "harx", "har", "ar", "arx", "ls") known_vol = ( "arch", "figarch", "aparch", "garch", "harch", "constant", "egarch", ) known_dist = ( "normal", "gaussian", "studentst", "t", "skewstudent", "skewt", "ged", "generalized error", ) mean_model = mean.lower() vol_model = vol.lower() dist_name = dist.lower() if mean_model not in known_mean: raise ValueError("Unknown model type in mean") if vol_model not in known_vol: raise ValueError("Unknown model type in vol") if dist_name not in known_dist: raise ValueError("Unknown model type in dist") if mean_model == "harx": am = HARX(y, x, lags, hold_back=hold_back, rescale=rescale) elif mean_model == "har": am = HARX(y, None, lags, hold_back=hold_back, rescale=rescale) elif mean_model == "arx": am = ARX(y, x, lags, hold_back=hold_back, rescale=rescale) elif mean_model == "ar": am = ARX(y, None, lags, hold_back=hold_back, rescale=rescale) elif mean_model == "ls": am = LS(y, x, hold_back=hold_back, rescale=rescale) elif mean_model == "constant": am = ConstantMean(y, hold_back=hold_back, rescale=rescale) else: # mean == "zero" am = ZeroMean(y, hold_back=hold_back, rescale=rescale) if vol in ("arch", "garch", "figarch", "egarch", "aparch") and not isinstance( p, int ): raise TypeError( "p must be a scalar int for all volatility processes except HARCH." ) if vol_model == "constant": v: VolatilityProcess = ConstantVariance() elif vol_model == "arch": assert isinstance(p, int) v = ARCH(p=p) elif vol_model == "figarch": assert isinstance(p, int) v = FIGARCH(p=p, q=q, power=power) elif vol_model == "garch": assert isinstance(p, int) v = GARCH(p=p, o=o, q=q, power=power) elif vol_model == "egarch": assert isinstance(p, int) v = EGARCH(p=p, o=o, q=q) elif vol_model == "aparch": assert isinstance(p, int) v = APARCH(p=p, o=o, q=q) else: # vol == 'harch' v = HARCH(lags=p) if dist_name in ("skewstudent", "skewt"): d: Distribution = SkewStudent() elif dist_name in ("studentst", "t"): d = StudentsT() elif dist_name in ("ged", "generalized error"): d = GeneralizedError() else: # ('gaussian', 'normal') d = Normal() am.volatility = v am.distribution = d return am