arch.univariate.HARX¶
-
class arch.univariate.HARX(y: ndarray | DataFrame | Series | None =
None
, x: ndarray | DataFrame | None =None
, lags: int | Sequence[int] | Sequence[Sequence[int]] | ndarray[Any, dtype[int32]] | ndarray[Any, dtype[longlong]] | None =None
, constant: bool =True
, use_rotated: bool =False
, hold_back: int | None =None
, volatility: VolatilityProcess | None =None
, distribution: Distribution | None =None
, rescale: bool | None =None
)[source]¶ Heterogeneous Autoregression (HAR), with optional exogenous regressors, model estimation and simulation
- Parameters:¶
- y: ndarray | DataFrame | Series | None =
None
¶ nobs element vector containing the dependent variable
- x: ndarray | DataFrame | None =
None
¶ nobs by k element array containing exogenous regressors
- lags: int | Sequence[int] | Sequence[Sequence[int]] | ndarray[Any, dtype[int32]] | ndarray[Any, dtype[longlong]] | None =
None
¶ Description of lag structure of the HAR.
Scalar included all lags between 1 and the value.
A 1-d n-element array includes the HAR lags 1:lags[0]+1, 1:lags[1]+1, … 1:lags[n]+1.
A 2-d (2,n)-element array that includes the HAR lags of the form lags[0,j]:lags[1,j]+1 for all columns of lags.
- constant: bool =
True
¶ Flag whether the model should include a constant
- use_rotated: bool =
False
¶ Flag indicating to use the alternative rotated form of the HAR where HAR lags do not overlap
- hold_back: int | None =
None
¶ Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.
- volatility: VolatilityProcess | None =
None
¶ Volatility process to use in the model
- distribution: Distribution | None =
None
¶ Error distribution to use in the model
- rescale: bool | None =
None
¶ Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results.
- y: ndarray | DataFrame | Series | None =
Examples
Standard HAR with average lags 1, 5 and 22
>>> import numpy as np >>> from arch.univariate import HARX >>> y = np.random.RandomState(1234).randn(100) >>> harx = HARX(y, lags=[1, 5, 22]) >>> res = harx.fit()
A standard HAR with average lags 1 and 6 but holding back 10 observations
>>> from pandas import Series, date_range >>> index = date_range('2000-01-01', freq='M', periods=y.shape[0]) >>> y = Series(y, name='y', index=index) >>> har = HARX(y, lags=[1, 6], hold_back=10)
Models with equivalent parametrizations of lags. The first uses overlapping lags.
>>> harx_1 = HARX(y, lags=[1,5,22])
The next uses rotated lags so that they do not overlap.
>>> harx_2 = HARX(y, lags=[1,5,22], use_rotated=True)
The third manually specified overlapping lags.
>>> harx_3 = HARX(y, lags=[[1, 1, 1], [1, 5, 22]])
The final manually specified non-overlapping lags
>>> harx_4 = HARX(y, lags=[[1, 2, 6], [1, 5, 22]])
It is simple to verify that these are the equivalent by inspecting the R2.
>>> models = [harx_1, harx_2, harx_3, harx_4] >>> print([mod.fit().rsquared for mod in models]) 0.085, 0.085, 0.085, 0.085
Notes
The HAR-X model is described by
\[y_t = \mu + \sum_{i=1}^p \phi_{L_{i}} \bar{y}_{t-L_{i,0}:L_{i,1}} + \gamma' x_t + \epsilon_t\]where \(\bar{y}_{t-L_{i,0}:L_{i,1}}\) is the average value of \(y_t\) between \(t-L_{i,0}\) and \(t - L_{i,1}\).
Methods
bounds
()Construct bounds for parameters to use in non-linear optimization
compute_param_cov
(params[, backcast, robust])Computes parameter covariances using numerical derivatives.
Construct linear constraint arrays for use in non-linear optimization
fit
([update_freq, disp, starting_values, ...])Estimate model parameters
fix
(params[, first_obs, last_obs])Allows an ARCHModelFixedResult to be constructed from fixed parameters.
forecast
(params[, horizon, start, align, ...])Construct forecasts from estimated model
List of parameters names
resids
(params[, y, regressors])Compute model residuals
simulate
(params, nobs[, burn, ...])Simulates data from a linear regression, AR or HAR models
Returns starting values for the mean model, often the same as the values returned from fit
Properties
Set or gets the error distribution
The name of the model.
Returns the number of parameters
Set or gets the volatility process
Gets the value of the exogenous regressors in the model
Returns the dependent variable