"""
Instrumental variable estimators
"""
from __future__ import annotations
from typing import Any, TypeVar, Union, cast
import warnings
from numpy import (
all as npall,
any as npany,
array,
asarray,
atleast_2d,
average,
c_,
column_stack,
eye,
isscalar,
logical_not,
nan,
nanmean,
ones,
sqrt,
squeeze,
)
from numpy.linalg import eigvalsh, inv, matrix_rank, pinv
import pandas
from pandas import DataFrame, Series, concat
from scipy.optimize import minimize
from linearmodels.iv._utility import IVFormulaParser
from linearmodels.iv.common import f_statistic, find_constant
from linearmodels.iv.covariance import (
ClusteredCovariance,
HeteroskedasticCovariance,
HomoskedasticCovariance,
KernelCovariance,
)
from linearmodels.iv.data import IVData, IVDataLike
from linearmodels.iv.gmm import (
HeteroskedasticWeightMatrix,
HomoskedasticWeightMatrix,
IVGMMCovariance,
KernelWeightMatrix,
OneWayClusteredWeightMatrix,
)
from linearmodels.iv.results import IVGMMResults, IVResults, OLSResults
from linearmodels.shared.exceptions import IndexWarning, missing_warning
from linearmodels.shared.hypotheses import InvalidTestStatistic, WaldTestStatistic
from linearmodels.shared.linalg import has_constant, inv_sqrth
from linearmodels.shared.utility import DataFrameWrapper, SeriesWrapper
import linearmodels.typing
import linearmodels.typing.data
IVResultType = type[Union[IVResults, IVGMMResults, OLSResults]]
__all__ = [
"COVARIANCE_ESTIMATORS",
"WEIGHT_MATRICES",
"IVGMM",
"IVLIML",
"IV2SLS",
"IVGMMCUE",
"IVResultType",
"_OLS",
]
COVARIANCE_ESTIMATORS = {
"homoskedastic": HomoskedasticCovariance,
"unadjusted": HomoskedasticCovariance,
"HomoskedasticCovariance": HomoskedasticCovariance,
"homo": HomoskedasticCovariance,
"robust": HeteroskedasticCovariance,
"heteroskedastic": HeteroskedasticCovariance,
"HeteroskedasticCovariance": HeteroskedasticCovariance,
"hccm": HeteroskedasticCovariance,
"kernel": KernelCovariance,
"KernelCovariance": KernelCovariance,
"one-way": ClusteredCovariance,
"clustered": ClusteredCovariance,
"OneWayClusteredCovariance": ClusteredCovariance,
}
CovarianceEstimator = TypeVar(
"CovarianceEstimator",
HomoskedasticCovariance,
HeteroskedasticCovariance,
KernelCovariance,
ClusteredCovariance,
)
WEIGHT_MATRICES = {
"unadjusted": HomoskedasticWeightMatrix,
"homoskedastic": HomoskedasticWeightMatrix,
"robust": HeteroskedasticWeightMatrix,
"heteroskedastic": HeteroskedasticWeightMatrix,
"kernel": KernelWeightMatrix,
"clustered": OneWayClusteredWeightMatrix,
"one-way": OneWayClusteredWeightMatrix,
}
class _IVModelBase:
r"""
Limited information ML and k-class estimation of IV models
Parameters
----------
dependent : array_like
Endogenous variables (nobs by 1)
exog : array_like
Exogenous regressors (nobs by nexog)
endog : array_like
Endogenous regressors (nobs by nendog)
instruments : array_like
Instrumental variables (nobs by ninstr)
weights : array_like
Observation weights used in estimation
fuller : float
Fuller's alpha to modify LIML estimator. Default returns unmodified
LIML estimator.
kappa : float
Parameter value for k-class estimation. If None, computed to
produce LIML parameter estimate.
Notes
-----
``kappa`` and ``fuller`` should not be used simultaneously since Fuller's
alpha applies an adjustment to ``kappa``, and so the same result can be
computed using only ``kappa``. Fuller's alpha is used to adjust the
LIML estimate of :math:`\kappa`, which is computed whenever ``kappa``
is not provided.
The LIML estimator is defined as
.. math::
\hat{\beta}_{\kappa} & =(X(I-\kappa M_{z})X)^{-1}X(I-\kappa M_{z})Y\\
M_{z} & =I-P_{z}\\
P_{z} & =Z(Z'Z)^{-1}Z'
where :math:`Z` contains both the exogenous regressors and the instruments.
:math:`\kappa` is estimated as part of the LIML estimator.
When using Fuller's :math:`\alpha`, the value used is modified to
.. math::
\kappa-\alpha/(n-n_{instr})
.. todo::
* VCV: bootstrap
See Also
--------
IV2SLS, IVGMM, IVGMMCUE
"""
def __init__(
self,
dependent: IVDataLike,
exog: IVDataLike | None,
endog: IVDataLike | None,
instruments: IVDataLike | None,
*,
weights: IVDataLike | None = None,
fuller: linearmodels.typing.Numeric = 0,
kappa: linearmodels.typing.OptionalNumeric = None,
):
self.dependent = IVData(dependent, var_name="dependent")
nobs: int = self.dependent.shape[0]
self.exog = IVData(exog, var_name="exog", nobs=nobs)
self.endog = IVData(endog, var_name="endog", nobs=nobs)
self.instruments = IVData(instruments, var_name="instruments", nobs=nobs)
self._original_index = self.dependent.pandas.index
if weights is None:
weights = ones(self.dependent.shape)
weights = IVData(weights).ndarray
if npany(weights <= 0):
raise ValueError("weights must be strictly positive.")
weights = weights / nanmean(weights)
self.weights = IVData(weights, var_name="weights", nobs=nobs)
self._drop_locs = self._drop_missing()
# dependent variable
w = sqrt(self.weights.ndarray)
self._y = self.dependent.ndarray
self._wy = self._y * w
# model regressors
self._x = c_[self.exog.ndarray, self.endog.ndarray]
self._wx = self._x * w
# first-stage regressors
self._z = c_[self.exog.ndarray, self.instruments.ndarray]
self._wz = self._z * w
self._has_constant = False
self._regressor_is_exog = array(
[True] * self.exog.shape[1] + [False] * self.endog.shape[1]
)
self._columns = self.exog.cols + self.endog.cols
self._instr_columns = self.exog.cols + self.instruments.cols
self._index = self.dependent.rows
self._validate_inputs()
if not hasattr(self, "_method"):
self._method = "IV-LIML"
additional = []
if fuller != 0:
additional.append(f"fuller(alpha={fuller})")
if kappa is not None:
additional.append(f"kappa={kappa}")
if additional:
self._method += "(" + ", ".join(additional) + ")"
self._kappa = kappa
self._fuller = fuller
if kappa is not None and not isscalar(kappa):
raise ValueError("kappa must be None or a scalar")
if not isscalar(fuller):
raise ValueError("fuller must be None or a scalar")
if kappa is not None and fuller != 0:
warnings.warn(
"kappa and fuller should not normally be used "
"simultaneously. Identical results can be computed "
"using kappa only",
UserWarning,
stacklevel=2,
)
if endog is None and instruments is None:
self._method = "OLS"
self._formula = ""
def predict(
self,
params: linearmodels.typing.data.ArrayLike,
*,
exog: IVDataLike | None = None,
endog: IVDataLike | None = None,
data: pandas.DataFrame | None = None,
eval_env: int = 4,
) -> DataFrame:
"""
Predict values for additional data
Parameters
----------
params : array_like
Model parameters (nvar by 1)
exog : array_like
Exogenous regressors (nobs by nexog)
endog : array_like
Endogenous regressors (nobs by nendog)
data : DataFrame
Values to use when making predictions from a model constructed
from a formula
eval_env : int
Depth of use when evaluating formulas.
Returns
-------
DataFrame
Fitted values from supplied data and parameters
Notes
-----
The number of parameters must satisfy nvar = nexog + nendog.
When using `exog` and `endog`, regressor matrix is constructed as
`[exog, endog]` and so parameters must be aligned to this structure.
The the the same structure used in model estimation.
If `data` is not none, then `exog` and `endog` must be none.
Predictions from models constructed using formulas can
be computed using either `exog` and `endog`, which will treat these are
arrays of values corresponding to the formula-processed data, or using
`data` which will be processed using the formula used to construct the
values corresponding to the original model specification.
"""
if data is not None and not self.formula:
raise ValueError(
"Unable to use data when the model was not " "created using a formula."
)
if data is not None and (exog is not None or endog is not None):
raise ValueError(
"Predictions can only be constructed using one "
"of exog/endog or data, but not both."
)
if exog is not None or endog is not None:
exog = IVData(exog).pandas
endog = IVData(endog).pandas
elif data is not None:
parser = IVFormulaParser(self.formula, data, eval_env=eval_env)
exog = parser.exog
endog = parser.endog
else:
raise ValueError("exog and endog or data must be provided.")
assert exog is not None
assert endog is not None
if exog.shape[0] != endog.shape[0]:
raise ValueError("exog and endog must have the same number of rows.")
if (exog.index != endog.index).any():
warnings.warn(
"The indices of exog and endog do not match. Predictions created "
"using the index of exog.",
IndexWarning,
stacklevel=2,
)
exog_endog = concat([exog, endog], axis=1)
x = asarray(exog_endog)
params = atleast_2d(asarray(params))
if params.shape[0] == 1:
params = params.T
pred = DataFrame(x @ params, index=exog_endog.index, columns=["predictions"])
return pred
@property
def formula(self) -> str:
"""Formula used to create the model"""
return self._formula
@formula.setter
def formula(self, value: str) -> None:
"""Formula used to create the model"""
self._formula = value
def _validate_inputs(self) -> None:
x, z = self._x, self._z
if x.shape[1] == 0:
raise ValueError("Model must contain at least one regressor.")
if self.instruments.shape[1] < self.endog.shape[1]:
raise ValueError(
"The number of instruments ({}) must be at least "
"as large as the number of endogenous regressors"
" ({}).".format(self.instruments.shape[1], self.endog.shape[1])
)
if matrix_rank(x) < x.shape[1]:
raise ValueError("regressors [exog endog] do not have full " "column rank")
if matrix_rank(z) < z.shape[1]:
raise ValueError(
"instruments [exog instruments] do not have " "full column rank"
)
self._has_constant, self._const_loc = has_constant(x)
def _drop_missing(self) -> linearmodels.typing.data.BoolArray:
data = (self.dependent, self.exog, self.endog, self.instruments, self.weights)
missing = cast(
linearmodels.typing.data.BoolArray,
npany(column_stack([dh.isnull for dh in data]), axis=1),
)
if npany(missing):
if npall(missing):
raise ValueError(
"All observations contain missing data. "
"Model cannot be estimated."
)
self.dependent.drop(missing)
self.exog.drop(missing)
self.endog.drop(missing)
self.instruments.drop(missing)
self.weights.drop(missing)
missing_warning(missing, stacklevel=4)
return missing
def wresids(
self, params: linearmodels.typing.data.Float64Array
) -> linearmodels.typing.data.Float64Array:
"""
Compute weighted model residuals
Parameters
----------
params : ndarray
Model parameters (nvar by 1)
Returns
-------
ndarray
Weighted model residuals
Notes
-----
Uses weighted versions of data instead of raw data. Identical to
resids if all weights are unity.
"""
return self._wy - self._wx @ params
def resids(
self, params: linearmodels.typing.data.Float64Array
) -> linearmodels.typing.data.Float64Array:
"""
Compute model residuals
Parameters
----------
params : ndarray
Model parameters (nvar by 1)
Returns
-------
ndarray
Model residuals
"""
return self._y - self._x @ params
@property
def has_constant(self) -> bool:
"""Flag indicating the model includes a constant or equivalent"""
return self._has_constant
@property
def isnull(self) -> linearmodels.typing.data.BoolArray:
"""Locations of observations with missing values"""
return self._drop_locs
@property
def notnull(self) -> linearmodels.typing.data.BoolArray:
"""Locations of observations included in estimation"""
return cast(linearmodels.typing.data.BoolArray, logical_not(self._drop_locs))
def _f_statistic(
self,
params: linearmodels.typing.data.Float64Array,
cov: linearmodels.typing.data.Float64Array,
debiased: bool,
) -> WaldTestStatistic | InvalidTestStatistic:
const_loc = find_constant(self._x)
nobs, nvar = self._x.shape
return f_statistic(params, cov, debiased, nobs - nvar, const_loc)
def _post_estimation(
self,
params: linearmodels.typing.data.Float64Array,
cov_estimator: CovarianceEstimator,
cov_type: str,
) -> dict[str, Any]:
columns = self._columns
index = self._index
eps = self.resids(params)
y = self.dependent.pandas
fitted = DataFrameWrapper(
asarray(y) - eps, index=y.index, columns=["fitted_values"]
)
weps = self.wresids(params)
cov = cov_estimator.cov
debiased = cov_estimator.debiased
residual_ss = squeeze(weps.T @ weps)
w = self.weights.ndarray
e = self._wy
if self.has_constant:
e = e - sqrt(self.weights.ndarray) * average(self._y, weights=w)
total_ss = float(squeeze(e.T @ e))
r2 = 1 - residual_ss / total_ss
fstat = self._f_statistic(params, cov, debiased)
out = {
"params": Series(params.squeeze(), columns, name="parameter"),
"eps": SeriesWrapper(eps.squeeze(), index=index, name="residual"),
"weps": SeriesWrapper(
weps.squeeze(), index=index, name="weighted residual"
),
"cov": DataFrame(cov, columns=columns, index=columns),
"s2": float(squeeze(cov_estimator.s2)),
"debiased": debiased,
"residual_ss": float(residual_ss),
"total_ss": float(total_ss),
"r2": float(squeeze(r2)),
"fstat": fstat,
"vars": columns,
"instruments": self._instr_columns,
"cov_config": cov_estimator.config,
"cov_type": cov_type,
"method": self._method,
"cov_estimator": cov_estimator,
"fitted": fitted,
"original_index": self._original_index,
}
return out
class _IVLSModelBase(_IVModelBase):
r"""
Limited information ML and k-class estimation of IV models
Parameters
----------
dependent : array_like
Endogenous variables (nobs by 1)
exog : array_like
Exogenous regressors (nobs by nexog)
endog : array_like
Endogenous regressors (nobs by nendog)
instruments : array_like
Instrumental variables (nobs by ninstr)
weights : array_like
Observation weights used in estimation
fuller : float
Fuller's alpha to modify LIML estimator. Default returns unmodified
LIML estimator.
kappa : float
Parameter value for k-class estimation. If None, computed to
produce LIML parameter estimate.
Notes
-----
``kappa`` and ``fuller`` should not be used simultaneously since Fuller's
alpha applies an adjustment to ``kappa``, and so the same result can be
computed using only ``kappa``. Fuller's alpha is used to adjust the
LIML estimate of :math:`\kappa`, which is computed whenever ``kappa``
is not provided.
The LIML estimator is defined as
.. math::
\hat{\beta}_{\kappa} & =(X(I-\kappa M_{z})X)^{-1}X(I-\kappa M_{z})Y\\
M_{z} & =I-P_{z}\\
P_{z} & =Z(Z'Z)^{-1}Z'
where :math:`Z` contains both the exogenous regressors and the instruments.
:math:`\kappa` is estimated as part of the LIML estimator.
When using Fuller's :math:`\alpha`, the value used is modified to
.. math::
\kappa-\alpha/(n-n_{instr})
.. todo::
* VCV: bootstrap
See Also
--------
IV2SLS, IVGMM, IVGMMCUE
"""
def __init__(
self,
dependent: IVDataLike,
exog: IVDataLike | None,
endog: IVDataLike | None,
instruments: IVDataLike | None,
*,
weights: IVDataLike | None = None,
fuller: linearmodels.typing.Numeric = 0,
kappa: linearmodels.typing.OptionalNumeric = None,
):
super().__init__(
dependent,
exog,
endog,
instruments,
weights=weights,
fuller=fuller,
kappa=kappa,
)
@staticmethod
def estimate_parameters(
x: linearmodels.typing.data.Float64Array,
y: linearmodels.typing.data.Float64Array,
z: linearmodels.typing.data.Float64Array,
kappa: linearmodels.typing.Numeric,
) -> linearmodels.typing.data.Float64Array:
"""
Parameter estimation without error checking
Parameters
----------
x : ndarray
Regressor matrix (nobs by nvar)
y : ndarray
Regressand matrix (nobs by 1)
z : ndarray
Instrument matrix (nobs by ninstr)
kappa : scalar
Parameter value for k-class estimator
Returns
-------
ndarray
Estimated parameters (nvar by 1)
Notes
-----
Exposed as a static method to facilitate estimation with other data,
e.g., bootstrapped samples. Performs no error checking.
"""
pinvz = pinv(z)
p1 = (x.T @ x) * (1 - kappa) + kappa * ((x.T @ z) @ (pinvz @ x))
p2 = (x.T @ y) * (1 - kappa) + kappa * ((x.T @ z) @ (pinvz @ y))
return inv(p1) @ p2
def _estimate_kappa(self) -> float:
y, x, z = self._wy, self._wx, self._wz
is_exog = self._regressor_is_exog
e = c_[y, x[:, ~is_exog]]
x1 = x[:, is_exog]
ez = e - z @ (pinv(z) @ e)
if x1.shape[1] == 0: # No exogenous regressors
ex1 = e
else:
ex1 = e - x1 @ (pinv(x1) @ e)
vpmzv_sqinv = inv_sqrth(ez.T @ ez)
q = vpmzv_sqinv @ (ex1.T @ ex1) @ vpmzv_sqinv
return min(eigvalsh(q))
def fit(
self, *, cov_type: str = "robust", debiased: bool = False, **cov_config: Any
) -> OLSResults | IVResults:
"""
Estimate model parameters
Parameters
----------
cov_type : str
Name of covariance estimator to use. Supported covariance
estimators are:
* "unadjusted", "homoskedastic" - Classic homoskedastic inference
* "robust", "heteroskedastic" - Heteroskedasticity robust inference
* "kernel" - Heteroskedasticity and autocorrelation robust
inference
* "cluster" - One-way cluster dependent inference.
Heteroskedasticity robust
debiased : bool
Flag indicating whether to debiased the covariance estimator using
a degree of freedom adjustment.
**cov_config
Additional parameters to pass to covariance estimator. The list
of optional parameters differ according to ``cov_type``. See
the documentation of the alternative covariance estimators for
the complete list of available commands.
Returns
-------
IVResults
Results container
Notes
-----
Additional covariance parameters depend on specific covariance used.
The see the docstring of specific covariance estimator for a list of
supported options. Defaults are used if no covariance configuration
is provided.
See also
--------
linearmodels.iv.covariance.HomoskedasticCovariance
linearmodels.iv.covariance.HeteroskedasticCovariance
linearmodels.iv.covariance.KernelCovariance
linearmodels.iv.covariance.ClusteredCovariance
"""
wy, wx, wz = self._wy, self._wx, self._wz
kappa = self._kappa
try:
liml_kappa: float = self._estimate_kappa()
except Exception as exc:
liml_kappa = nan
if kappa is None:
raise ValueError(
"Unable to estimate kappa. This is most likely occurs if the "
f"instrument matrix is rank deficient. The error raised when "
f"computing kappa was:\n\n{exc}"
)
if kappa is not None:
est_kappa = kappa
else:
est_kappa = liml_kappa
if self._fuller != 0:
nobs, ninstr = wz.shape
est_kappa -= self._fuller / (nobs - ninstr)
params = self.estimate_parameters(wx, wy, wz, est_kappa)
cov_estimator = COVARIANCE_ESTIMATORS[cov_type]
cov_config["debiased"] = debiased
cov_config["kappa"] = est_kappa
cov_config_copy = {k: v for k, v in cov_config.items()}
if "center" in cov_config_copy:
del cov_config_copy["center"]
cov_estimator_inst = cov_estimator(wx, wy, wz, params, **cov_config_copy)
results = {"kappa": est_kappa, "liml_kappa": liml_kappa}
pe = self._post_estimation(params, cov_estimator_inst, cov_type)
results.update(pe)
if self.endog.shape[1] == 0 and self.instruments.shape[1] == 0:
return OLSResults(results, self)
else:
return IVResults(results, self)
[docs]
class IVLIML(_IVLSModelBase):
r"""
Limited information ML and k-class estimation of IV models
Parameters
----------
dependent : array_like
Endogenous variables (nobs by 1)
exog : array_like
Exogenous regressors (nobs by nexog)
endog : array_like
Endogenous regressors (nobs by nendog)
instruments : array_like
Instrumental variables (nobs by ninstr)
weights : array_like
Observation weights used in estimation
fuller : float
Fuller's alpha to modify LIML estimator. Default returns unmodified
LIML estimator.
kappa : float
Parameter value for k-class estimation. If None, computed to
produce LIML parameter estimate.
Notes
-----
``kappa`` and ``fuller`` should not be used simultaneously since Fuller's
alpha applies an adjustment to ``kappa``, and so the same result can be
computed using only ``kappa``. Fuller's alpha is used to adjust the
LIML estimate of :math:`\kappa`, which is computed whenever ``kappa``
is not provided.
The LIML estimator is defined as
.. math::
\hat{\beta}_{\kappa} & =(X(I-\kappa M_{z})X)^{-1}X(I-\kappa M_{z})Y\\
M_{z} & =I-P_{z}\\
P_{z} & =Z(Z'Z)^{-1}Z'
where :math:`Z` contains both the exogenous regressors and the instruments.
:math:`\kappa` is estimated as part of the LIML estimator.
When using Fuller's :math:`\alpha`, the value used is modified to
.. math::
\kappa-\alpha/(n-n_{instr})
.. todo::
* VCV: bootstrap
See Also
--------
IV2SLS, IVGMM, IVGMMCUE
"""
def __init__(
self,
dependent: IVDataLike,
exog: IVDataLike | None,
endog: IVDataLike | None,
instruments: IVDataLike | None,
*,
weights: IVDataLike | None = None,
fuller: linearmodels.typing.Numeric = 0,
kappa: linearmodels.typing.OptionalNumeric = None,
):
super().__init__(
dependent,
exog,
endog,
instruments,
weights=weights,
fuller=fuller,
kappa=kappa,
)
[docs]
class IV2SLS(_IVLSModelBase):
r"""
Estimation of IV models using two-stage least squares
Parameters
----------
dependent : array_like
Endogenous variables (nobs by 1)
exog : array_like
Exogenous regressors (nobs by nexog)
endog : array_like
Endogenous regressors (nobs by nendog)
instruments : array_like
Instrumental variables (nobs by ninstr)
weights : array_like
Observation weights used in estimation
Notes
-----
The 2SLS estimator is defined
.. math::
\hat{\beta}_{2SLS} & =(X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'Y\\
& =(\hat{X}'\hat{X})^{-1}\hat{X}'Y\\
\hat{X} & =Z(Z'Z)^{-1}Z'X
The 2SLS estimator is a special case of a k-class estimator with
:math:`\kappa=1`,
.. todo::
* VCV: bootstrap
See Also
--------
IVLIML, IVGMM, IVGMMCUE
"""
def __init__(
self,
dependent: IVDataLike,
exog: IVDataLike | None,
endog: IVDataLike | None,
instruments: IVDataLike | None,
*,
weights: IVDataLike | None = None,
):
self._method = "IV-2SLS"
super().__init__(
dependent, exog, endog, instruments, weights=weights, fuller=0, kappa=1
)
class _IVGMMBase(_IVModelBase):
r"""
Estimation of IV models using the generalized method of moments (GMM)
Parameters
----------
dependent : array_like
Endogenous variables (nobs by 1)
exog : array_like
Exogenous regressors (nobs by nexog)
endog : array_like
Endogenous regressors (nobs by nendog)
instruments : array_like
Instrumental variables (nobs by ninstr)
weights : array_like
Observation weights used in estimation
weight_type : str
Name of moment condition weight function to use in the GMM estimation
**weight_config
Additional keyword arguments to pass to the moment condition weight
function
Notes
-----
Available GMM weight functions are:
* "unadjusted", "homoskedastic" - Assumes moment conditions are
homoskedastic
* "robust", "heteroskedastic" - Allows for heteroskedasticity by not
autocorrelation
* "kernel" - Allows for heteroskedasticity and autocorrelation
* "cluster" - Allows for one-way cluster dependence
The estimator is defined as
.. math::
\hat{\beta}_{gmm}=(X'ZW^{-1}Z'X)^{-1}X'ZW^{-1}Z'Y
where :math:`W` is a positive definite weight matrix and :math:`Z`
contains both the exogenous regressors and the instruments.
.. todo::
* VCV: bootstrap
See Also
--------
IV2SLS, IVLIML, IVGMMCUE
"""
def __init__(
self,
dependent: IVDataLike,
exog: IVDataLike | None,
endog: IVDataLike | None,
instruments: IVDataLike | None,
*,
weights: IVDataLike | None = None,
weight_type: str = "robust",
**weight_config: Any,
):
super().__init__(dependent, exog, endog, instruments, weights=weights)
self._method = "IV-GMM"
weight_matrix_estimator = WEIGHT_MATRICES[weight_type]
self._weight = weight_matrix_estimator(**weight_config)
self._weight_type = weight_type
self._weight_config = self._weight.config
def _gmm_post_estimation(
self,
params: linearmodels.typing.data.Float64Array,
weight_mat: linearmodels.typing.data.Float64Array,
iters: int,
) -> dict[str, Any]:
"""GMM-specific post-estimation results"""
instr = self._instr_columns
gmm_specific = {
"weight_mat": DataFrame(weight_mat, columns=instr, index=instr),
"weight_type": self._weight_type,
"weight_config": self._weight_type,
"iterations": iters,
"j_stat": self._j_statistic(params, weight_mat),
}
return gmm_specific
def _j_statistic(
self,
params: linearmodels.typing.data.Float64Array,
weight_mat: linearmodels.typing.data.Float64Array,
) -> WaldTestStatistic:
"""J stat and test"""
y, x, z = self._wy, self._wx, self._wz
nobs, nvar, ninstr = y.shape[0], x.shape[1], z.shape[1]
eps = y - x @ params
g_bar = (z * eps).mean(0)
stat = float(nobs * g_bar.T @ weight_mat @ g_bar.T)
null = "Expected moment conditions are equal to 0"
return WaldTestStatistic(stat, null, ninstr - nvar)
[docs]
class IVGMM(_IVGMMBase):
r"""
Estimation of IV models using the generalized method of moments (GMM)
Parameters
----------
dependent : array_like
Endogenous variables (nobs by 1)
exog : array_like
Exogenous regressors (nobs by nexog)
endog : array_like
Endogenous regressors (nobs by nendog)
instruments : array_like
Instrumental variables (nobs by ninstr)
weights : array_like
Observation weights used in estimation
weight_type : str
Name of moment condition weight function to use in the GMM estimation
**weight_config
Additional keyword arguments to pass to the moment condition weight
function
Notes
-----
Available GMM weight functions are:
* "unadjusted", "homoskedastic" - Assumes moment conditions are
homoskedastic
* "robust", "heteroskedastic" - Allows for heteroskedasticity by not
autocorrelation
* "kernel" - Allows for heteroskedasticity and autocorrelation
* "cluster" - Allows for one-way cluster dependence
The estimator is defined as
.. math::
\hat{\beta}_{gmm}=(X'ZW^{-1}Z'X)^{-1}X'ZW^{-1}Z'Y
where :math:`W` is a positive definite weight matrix and :math:`Z`
contains both the exogenous regressors and the instruments.
.. todo::
* VCV: bootstrap
See Also
--------
IV2SLS, IVLIML, IVGMMCUE
"""
def __init__(
self,
dependent: IVDataLike,
exog: IVDataLike | None,
endog: IVDataLike | None,
instruments: IVDataLike | None,
*,
weights: IVDataLike | None = None,
weight_type: str = "robust",
**weight_config: Any,
):
super().__init__(dependent, exog, endog, instruments, weights=weights)
self._method = "IV-GMM"
weight_matrix_estimator = WEIGHT_MATRICES[weight_type]
self._weight = weight_matrix_estimator(**weight_config)
self._weight_type = weight_type
self._weight_config = self._weight.config
[docs]
@staticmethod
def estimate_parameters(
x: linearmodels.typing.data.Float64Array,
y: linearmodels.typing.data.Float64Array,
z: linearmodels.typing.data.Float64Array,
w: linearmodels.typing.data.Float64Array,
) -> linearmodels.typing.data.Float64Array:
"""
Parameters
----------
x : ndarray
Regressor matrix (nobs by nvar)
y : ndarray
Regressand matrix (nobs by 1)
z : ndarray
Instrument matrix (nobs by ninstr)
w : ndarray
GMM weight matrix (ninstr by ninstr)
Returns
-------
ndarray
Estimated parameters (nvar by 1)
Notes
-----
Exposed as a static method to facilitate estimation with other data,
e.g., bootstrapped samples. Performs no error checking.
"""
xpz = x.T @ z
zpy = z.T @ y
return inv(xpz @ w @ xpz.T) @ (xpz @ w @ zpy)
[docs]
def fit(
self,
*,
iter_limit: int = 2,
tol: float = 1e-4,
initial_weight: linearmodels.typing.data.Float64Array | None = None,
cov_type: str = "robust",
debiased: bool = False,
**cov_config: Any,
) -> OLSResults | IVGMMResults:
"""
Estimate model parameters
Parameters
----------
iter_limit : int
Maximum number of iterations. Default is 2, which produces
two-step efficient GMM estimates. Larger values can be used
to iterate between parameter estimation and optimal weight
matrix estimation until convergence.
tol : float
Convergence criteria. Measured as covariance normalized change in
parameters across iterations where the covariance estimator is
based on the first step parameter estimates.
initial_weight : numpy.ndarray
Initial weighting matrix to use in the first step. If not
specified, uses the average outer-product of the set containing
the exogenous variables and instruments.
cov_type : str
Name of covariance estimator to use. Available covariance
functions are:
* "unadjusted", "homoskedastic" - Assumes moment conditions are
homoskedastic
* "robust", "heteroskedastic" - Allows for heteroskedasticity but
not autocorrelation
* "kernel" - Allows for heteroskedasticity and autocorrelation
* "cluster" - Allows for one-way cluster dependence
debiased : bool
Flag indicating whether to debiased the covariance estimator using
a degree of freedom adjustment.
**cov_config
Additional parameters to pass to covariance estimator. Supported
parameters depend on specific covariance structure assumed. See
:class:`linearmodels.iv.gmm.IVGMMCovariance` for details
on the available options. Defaults are used if no covariance
configuration is provided.
Returns
-------
IVGMMResults
Results container
See also
--------
linearmodels.iv.gmm.IVGMMCovariance
"""
wy, wx, wz = self._wy, self._wx, self._wz
nobs = wy.shape[0]
weight_matrix = self._weight.weight_matrix
k_wz = wz.shape[1]
if initial_weight is not None:
initial_weight = asarray(initial_weight)
if initial_weight.ndim != 2 or initial_weight.shape != (k_wz, k_wz):
raise ValueError(f"initial_weight must be a {k_wz} by {k_wz} array")
wmat = inv(wz.T @ wz / nobs) if initial_weight is None else initial_weight
_params = params = self.estimate_parameters(wx, wy, wz, wmat)
iters, norm = 1, 10 * tol + 1
vinv = eye(params.shape[0])
while iters < iter_limit and norm > tol:
eps = wy - wx @ params
wmat = inv(weight_matrix(wx, wz, eps))
params = self.estimate_parameters(wx, wy, wz, wmat)
delta = params - _params
if iters == 1:
xpz = wx.T @ wz / nobs
v = (xpz @ wmat @ xpz.T) / nobs
vinv = inv(v)
_params = params
norm = float(squeeze(delta.T @ vinv @ delta))
iters += 1
cov_config["debiased"] = debiased
cov_estimator = IVGMMCovariance(
wx, wy, wz, params, wmat, cov_type, **cov_config
)
results = self._post_estimation(params, cov_estimator, cov_type)
gmm_pe = self._gmm_post_estimation(params, wmat, iters)
results.update(gmm_pe)
return IVGMMResults(results, self)
def _gmm_post_estimation(
self,
params: linearmodels.typing.data.Float64Array,
weight_mat: linearmodels.typing.data.Float64Array,
iters: int,
) -> dict[str, Any]:
"""GMM-specific post-estimation results"""
instr = self._instr_columns
gmm_specific = {
"weight_mat": DataFrame(weight_mat, columns=instr, index=instr),
"weight_type": self._weight_type,
"weight_config": self._weight_type,
"iterations": iters,
"j_stat": self._j_statistic(params, weight_mat),
}
return gmm_specific
[docs]
class IVGMMCUE(_IVGMMBase):
r"""
Estimation of IV models using continuously updating GMM
Parameters
----------
dependent : array_like
Endogenous variables (nobs by 1)
exog : array_like
Exogenous regressors (nobs by nexog)
endog : array_like
Endogenous regressors (nobs by nendog)
instruments : array_like
Instrumental variables (nobs by ninstr)
weights : array_like
Observation weights used in estimation
weight_type : str
Name of moment condition weight function to use in the GMM estimation
**weight_config
Additional keyword arguments to pass to the moment condition weight
function
Notes
-----
Available weight functions are:
* "unadjusted", "homoskedastic" - Assumes moment conditions are
homoskedastic
* "robust", "heteroskedastic" - Allows for heteroskedasticity by not
autocorrelation
* "kernel" - Allows for heteroskedasticity and autocorrelation
* "cluster" - Allows for one-way cluster dependence
In most circumstances, the ``center`` weight option should be ``True`` to
avoid starting value dependence.
.. math::
\hat{\beta}_{cue} & =\min_{\beta}\bar{g}(\beta)'W(\beta)^{-1}g(\beta)\\
g(\beta) & =n^{-1}\sum_{i=1}^{n}z_{i}(y_{i}-x_{i}\beta)
where :math:`W(\beta)` is a weight matrix that depends on :math:`\beta`
through :math:`\epsilon_i = y_i - x_i\beta`.
See Also
--------
IV2SLS, IVLIML, IVGMM
"""
def __init__(
self,
dependent: IVDataLike,
exog: IVDataLike | None,
endog: IVDataLike | None,
instruments: IVDataLike | None,
*,
weights: IVDataLike | None = None,
weight_type: str = "robust",
**weight_config: Any,
) -> None:
self._method = "IV-GMM-CUE"
super().__init__(
dependent,
exog,
endog,
instruments,
weights=weights,
weight_type=weight_type,
**weight_config,
)
if "center" not in weight_config:
weight_config["center"] = True
[docs]
def j(
self,
params: linearmodels.typing.data.Float64Array,
x: linearmodels.typing.data.Float64Array,
y: linearmodels.typing.data.Float64Array,
z: linearmodels.typing.data.Float64Array,
) -> float:
r"""
Optimization target
Parameters
----------
params : ndarray
Parameter vector (nvar)
x : ndarray
Regressor matrix (nobs by nvar)
y : ndarray
Regressand matrix (nobs by 1)
z : ndarray
Instrument matrix (nobs by ninstr)
Returns
-------
float
GMM objective function, also known as the J statistic
Notes
-----
The GMM objective function is defined as
.. math::
J(\beta) = \bar{g}(\beta)'W(\beta)^{-1}\bar{g}(\beta)
where :math:`\bar{g}(\beta)` is the average of the moment
conditions, :math:`z_i \hat{\epsilon}_i`, where
:math:`\hat{\epsilon}_i = y_i - x_i\beta`. The weighting matrix
is some estimator of the long-run variance of the moment conditions.
Unlike tradition GMM, the weighting matrix is simultaneously computed
with the moment conditions, and so has explicit dependence on
:math:`\beta`.
"""
nobs = y.shape[0]
weight_matrix = self._weight.weight_matrix
eps = y - x @ params[:, None]
w = inv(weight_matrix(x, z, eps))
g_bar = (z * eps).mean(0)
return nobs * float(g_bar.T @ w @ g_bar.T)
[docs]
def estimate_parameters(
self,
starting: linearmodels.typing.data.Float64Array,
x: linearmodels.typing.data.Float64Array,
y: linearmodels.typing.data.Float64Array,
z: linearmodels.typing.data.Float64Array,
display: bool = False,
opt_options: dict[str, Any] | None = None,
) -> tuple[linearmodels.typing.data.Float64Array, int]:
r"""
Parameters
----------
starting : ndarray
Starting values for the optimization
x : ndarray
Regressor matrix (nobs by nvar)
y : ndarray
Regressand matrix (nobs by 1)
z : ndarray
Instrument matrix (nobs by ninstr)
display : bool
Flag indicating whether to display iterative optimizer output
opt_options : dict
Dictionary containing additional keyword arguments to pass to
scipy.optimize.minimize.
Returns
-------
ndarray
Estimated parameters (nvar by 1)
Notes
-----
Exposed to facilitate estimation with other data, e.g., bootstrapped
samples. Performs no error checking.
See Also
--------
scipy.optimize.minimize
"""
args = (x, y, z)
if opt_options is None:
opt_options = {}
assert opt_options is not None
options = {"disp": display}
if "options" in opt_options:
opt_options = opt_options.copy()
options.update(opt_options.pop("options"))
res = minimize(self.j, starting, args=args, options=options, **opt_options)
return res.x[:, None], res.nit
[docs]
def fit(
self,
*,
starting: linearmodels.typing.data.Float64Array | pandas.Series | None = None,
display: bool = False,
cov_type: str = "robust",
debiased: bool = False,
opt_options: dict[str, Any] | None = None,
**cov_config: Any,
) -> OLSResults | IVGMMResults:
r"""
Estimate model parameters
Parameters
----------
starting : ndarray
Starting values to use in optimization. If not provided, 2SLS
estimates are used.
display : bool
Flag indicating whether to display optimization output
cov_type : str
Name of covariance estimator to use
debiased : bool
Flag indicating whether to debiased the covariance estimator using
a degree of freedom adjustment.
opt_options : dict
Additional options to pass to scipy.optimize.minimize when
optimizing the objective function. If not provided, defers to
scipy to choose an appropriate optimizer. All minimize inputs
except ``fun``, ``x0``, and ``args`` can be overridden.
**cov_config
Additional parameters to pass to covariance estimator. Supported
parameters depend on specific covariance structure assumed. See
:class:`linearmodels.iv.gmm.IVGMMCovariance` for details
on the available options. Defaults are used if no covariance
configuration is provided.
Returns
-------
IVGMMResults
Results container
Notes
-----
Starting values are computed by IVGMM.
See also
--------
linearmodels.iv.gmm.IVGMMCovariance
"""
wy, wx, wz = self._wy, self._wx, self._wz
weight_matrix = self._weight.weight_matrix
if starting is None:
exog = None if self.exog.shape[1] == 0 else self.exog
endog = None if self.endog.shape[1] == 0 else self.endog
instr = None if self.instruments.shape[1] == 0 else self.instruments
res = IVGMM(
self.dependent,
exog,
endog,
instr,
weights=self.weights,
weight_type=self._weight_type,
**self._weight_config,
).fit()
starting = asarray(res.params)
else:
starting = asarray(starting)
if len(starting) != self.exog.shape[1] + self.endog.shape[1]:
raise ValueError(
"starting does not have the correct number " "of values"
)
params, iters = self.estimate_parameters(
starting, wx, wy, wz, display, opt_options=opt_options
)
eps = wy - wx @ params
wmat = inv(weight_matrix(wx, wz, eps))
cov_config["debiased"] = debiased
cov_estimator = IVGMMCovariance(
wx, wy, wz, params, wmat, cov_type, **cov_config
)
results = self._post_estimation(params, cov_estimator, cov_type)
gmm_pe = self._gmm_post_estimation(params, wmat, iters)
results.update(gmm_pe)
return IVGMMResults(results, self)
[docs]
class _OLS(IVLIML):
"""
Computes OLS estimates when required
Private class used when model reduces to OLS. Should use the statsmodels
version when neeeding a supported public API.
Parameters
----------
dependent : array_like
Endogenous variables (nobs by 1)
exog : array_like
Exogenous regressors (nobs by nexog)
weights : array_like
Observation weights used in estimation
Notes
-----
Uses IV2SLS internally by setting endog and instruments to None.
Uses IVLIML with kappa=0 to estimate OLS models.
See Also
--------
statsmodels.regression.linear_model.OLS,
statsmodels.regression.linear_model.GLS
"""
def __init__(
self,
dependent: IVDataLike,
exog: IVDataLike,
*,
weights: IVDataLike | None = None,
):
super().__init__(dependent, exog, None, None, weights=weights, kappa=0.0)
self._result_container = OLSResults
def _gmm_model_from_formula(
cls: type[IVGMM] | type[IVGMMCUE],
formula: str,
data: pandas.DataFrame,
weights: IVDataLike | None,
weight_type: str,
**weight_config: Any,
) -> IVGMM | IVGMMCUE:
"""
Parameters
----------
formula : str
Formula modified for the IV syntax described in the notes
section
data : DataFrame
DataFrame containing the variables used in the formula
weights : array_like
Observation weights used in estimation
weight_type : str
Name of moment condition weight function to use in the GMM estimation
**weight_config
Additional keyword arguments to pass to the moment condition weight
function
Returns
-------
{IVGMM, IVGMMCUE}
Model instance
"""
parser = IVFormulaParser(formula, data, eval_env=3)
dep, exog, endog, instr = parser.data
mod = cls(
dep,
exog,
endog,
instr,
weights=weights,
weight_type=weight_type,
**weight_config,
)
mod.formula = formula
return mod