Source code for linearmodels.iv.model

"""
Instrumental variable estimators
"""

from __future__ import annotations

from typing import Any, TypeVar, Union, cast
import warnings

from numpy import (
    all as npall,
    any as npany,
    array,
    asarray,
    atleast_2d,
    average,
    c_,
    column_stack,
    eye,
    isscalar,
    logical_not,
    nan,
    nanmean,
    ones,
    sqrt,
    squeeze,
)
from numpy.linalg import eigvalsh, inv, matrix_rank, pinv
import pandas
from pandas import DataFrame, Series, concat
from scipy.optimize import minimize

from linearmodels.iv._utility import IVFormulaParser
from linearmodels.iv.common import f_statistic, find_constant
from linearmodels.iv.covariance import (
    ClusteredCovariance,
    HeteroskedasticCovariance,
    HomoskedasticCovariance,
    KernelCovariance,
)
from linearmodels.iv.data import IVData, IVDataLike
from linearmodels.iv.gmm import (
    HeteroskedasticWeightMatrix,
    HomoskedasticWeightMatrix,
    IVGMMCovariance,
    KernelWeightMatrix,
    OneWayClusteredWeightMatrix,
)
from linearmodels.iv.results import IVGMMResults, IVResults, OLSResults
from linearmodels.shared.exceptions import IndexWarning, missing_warning
from linearmodels.shared.hypotheses import InvalidTestStatistic, WaldTestStatistic
from linearmodels.shared.linalg import has_constant, inv_sqrth
from linearmodels.shared.utility import DataFrameWrapper, SeriesWrapper
import linearmodels.typing
import linearmodels.typing.data

IVResultType = type[Union[IVResults, IVGMMResults, OLSResults]]

__all__ = [
    "COVARIANCE_ESTIMATORS",
    "WEIGHT_MATRICES",
    "IVGMM",
    "IVLIML",
    "IV2SLS",
    "IVGMMCUE",
    "IVResultType",
    "_OLS",
]

COVARIANCE_ESTIMATORS = {
    "homoskedastic": HomoskedasticCovariance,
    "unadjusted": HomoskedasticCovariance,
    "HomoskedasticCovariance": HomoskedasticCovariance,
    "homo": HomoskedasticCovariance,
    "robust": HeteroskedasticCovariance,
    "heteroskedastic": HeteroskedasticCovariance,
    "HeteroskedasticCovariance": HeteroskedasticCovariance,
    "hccm": HeteroskedasticCovariance,
    "kernel": KernelCovariance,
    "KernelCovariance": KernelCovariance,
    "one-way": ClusteredCovariance,
    "clustered": ClusteredCovariance,
    "OneWayClusteredCovariance": ClusteredCovariance,
}

CovarianceEstimator = TypeVar(
    "CovarianceEstimator",
    HomoskedasticCovariance,
    HeteroskedasticCovariance,
    KernelCovariance,
    ClusteredCovariance,
)

WEIGHT_MATRICES = {
    "unadjusted": HomoskedasticWeightMatrix,
    "homoskedastic": HomoskedasticWeightMatrix,
    "robust": HeteroskedasticWeightMatrix,
    "heteroskedastic": HeteroskedasticWeightMatrix,
    "kernel": KernelWeightMatrix,
    "clustered": OneWayClusteredWeightMatrix,
    "one-way": OneWayClusteredWeightMatrix,
}


class _IVModelBase:
    r"""
    Limited information ML and k-class estimation of IV models

    Parameters
    ----------
    dependent : array_like
        Endogenous variables (nobs by 1)
    exog : array_like
        Exogenous regressors  (nobs by nexog)
    endog : array_like
        Endogenous regressors (nobs by nendog)
    instruments : array_like
        Instrumental variables (nobs by ninstr)
    weights : array_like
        Observation weights used in estimation
    fuller : float
        Fuller's alpha to modify LIML estimator. Default returns unmodified
        LIML estimator.
    kappa : float
        Parameter value for k-class estimation.  If None, computed to
        produce LIML parameter estimate.

    Notes
    -----
    ``kappa`` and ``fuller`` should not be used simultaneously since Fuller's
    alpha applies an adjustment to ``kappa``, and so the same result can be
    computed using only ``kappa``. Fuller's alpha is used to adjust the
    LIML estimate of :math:`\kappa`, which is computed whenever ``kappa``
    is not provided.

    The LIML estimator is defined as

    .. math::

      \hat{\beta}_{\kappa} & =(X(I-\kappa M_{z})X)^{-1}X(I-\kappa M_{z})Y\\
      M_{z} & =I-P_{z}\\
      P_{z} & =Z(Z'Z)^{-1}Z'

    where :math:`Z` contains both the exogenous regressors and the instruments.
    :math:`\kappa` is estimated as part of the LIML estimator.

    When using Fuller's :math:`\alpha`, the value used is modified to

    .. math::

      \kappa-\alpha/(n-n_{instr})

    .. todo::

      * VCV: bootstrap

    See Also
    --------
    IV2SLS, IVGMM, IVGMMCUE
    """

    def __init__(
        self,
        dependent: IVDataLike,
        exog: IVDataLike | None,
        endog: IVDataLike | None,
        instruments: IVDataLike | None,
        *,
        weights: IVDataLike | None = None,
        fuller: linearmodels.typing.Numeric = 0,
        kappa: linearmodels.typing.OptionalNumeric = None,
    ):
        self.dependent = IVData(dependent, var_name="dependent")
        nobs: int = self.dependent.shape[0]
        self.exog = IVData(exog, var_name="exog", nobs=nobs)
        self.endog = IVData(endog, var_name="endog", nobs=nobs)
        self.instruments = IVData(instruments, var_name="instruments", nobs=nobs)
        self._original_index = self.dependent.pandas.index
        if weights is None:
            weights = ones(self.dependent.shape)
        weights = IVData(weights).ndarray
        if npany(weights <= 0):
            raise ValueError("weights must be strictly positive.")
        weights = weights / nanmean(weights)
        self.weights = IVData(weights, var_name="weights", nobs=nobs)

        self._drop_locs = self._drop_missing()
        # dependent variable
        w = sqrt(self.weights.ndarray)
        self._y = self.dependent.ndarray
        self._wy = self._y * w
        # model regressors
        self._x = c_[self.exog.ndarray, self.endog.ndarray]
        self._wx = self._x * w
        # first-stage regressors
        self._z = c_[self.exog.ndarray, self.instruments.ndarray]
        self._wz = self._z * w

        self._has_constant = False
        self._regressor_is_exog = array(
            [True] * self.exog.shape[1] + [False] * self.endog.shape[1]
        )
        self._columns = self.exog.cols + self.endog.cols
        self._instr_columns = self.exog.cols + self.instruments.cols
        self._index = self.dependent.rows

        self._validate_inputs()
        if not hasattr(self, "_method"):
            self._method = "IV-LIML"
            additional = []
            if fuller != 0:
                additional.append(f"fuller(alpha={fuller})")
            if kappa is not None:
                additional.append(f"kappa={kappa}")
            if additional:
                self._method += "(" + ", ".join(additional) + ")"

        self._kappa = kappa
        self._fuller = fuller
        if kappa is not None and not isscalar(kappa):
            raise ValueError("kappa must be None or a scalar")
        if not isscalar(fuller):
            raise ValueError("fuller must be None or a scalar")
        if kappa is not None and fuller != 0:
            warnings.warn(
                "kappa and fuller should not normally be used "
                "simultaneously.  Identical results can be computed "
                "using kappa only",
                UserWarning,
                stacklevel=2,
            )
        if endog is None and instruments is None:
            self._method = "OLS"
        self._formula = ""

    def predict(
        self,
        params: linearmodels.typing.data.ArrayLike,
        *,
        exog: IVDataLike | None = None,
        endog: IVDataLike | None = None,
        data: pandas.DataFrame | None = None,
        eval_env: int = 4,
    ) -> DataFrame:
        """
        Predict values for additional data

        Parameters
        ----------
        params : array_like
            Model parameters (nvar by 1)
        exog : array_like
            Exogenous regressors (nobs by nexog)
        endog : array_like
            Endogenous regressors (nobs by nendog)
        data : DataFrame
            Values to use when making predictions from a model constructed
            from a formula
        eval_env : int
            Depth of use when evaluating formulas.

        Returns
        -------
        DataFrame
            Fitted values from supplied data and parameters

        Notes
        -----
        The number of parameters must satisfy nvar = nexog + nendog.

        When using `exog` and `endog`, regressor matrix is constructed as
        `[exog, endog]` and so parameters must be aligned to this structure.
        The the the same structure used in model estimation.

        If `data` is not none, then `exog` and `endog` must be none.
        Predictions from models constructed using formulas can
        be computed using either `exog` and `endog`, which will treat these are
        arrays of values corresponding to the formula-processed data, or using
        `data` which will be processed using the formula used to construct the
        values corresponding to the original model specification.
        """
        if data is not None and not self.formula:
            raise ValueError(
                "Unable to use data when the model was not " "created using a formula."
            )
        if data is not None and (exog is not None or endog is not None):
            raise ValueError(
                "Predictions can only be constructed using one "
                "of exog/endog or data, but not both."
            )
        if exog is not None or endog is not None:
            exog = IVData(exog).pandas
            endog = IVData(endog).pandas
        elif data is not None:
            parser = IVFormulaParser(self.formula, data, eval_env=eval_env)
            exog = parser.exog
            endog = parser.endog
        else:
            raise ValueError("exog and endog or data must be provided.")
        assert exog is not None
        assert endog is not None
        if exog.shape[0] != endog.shape[0]:
            raise ValueError("exog and endog must have the same number of rows.")
        if (exog.index != endog.index).any():
            warnings.warn(
                "The indices of exog and endog do not match.  Predictions created "
                "using the index of exog.",
                IndexWarning,
                stacklevel=2,
            )
        exog_endog = concat([exog, endog], axis=1)
        x = asarray(exog_endog)
        params = atleast_2d(asarray(params))
        if params.shape[0] == 1:
            params = params.T
        pred = DataFrame(x @ params, index=exog_endog.index, columns=["predictions"])

        return pred

    @property
    def formula(self) -> str:
        """Formula used to create the model"""
        return self._formula

    @formula.setter
    def formula(self, value: str) -> None:
        """Formula used to create the model"""
        self._formula = value

    def _validate_inputs(self) -> None:
        x, z = self._x, self._z
        if x.shape[1] == 0:
            raise ValueError("Model must contain at least one regressor.")
        if self.instruments.shape[1] < self.endog.shape[1]:
            raise ValueError(
                "The number of instruments ({}) must be at least "
                "as large as the number of endogenous regressors"
                " ({}).".format(self.instruments.shape[1], self.endog.shape[1])
            )
        if matrix_rank(x) < x.shape[1]:
            raise ValueError("regressors [exog endog] do not have full " "column rank")
        if matrix_rank(z) < z.shape[1]:
            raise ValueError(
                "instruments [exog instruments]  do not have " "full column rank"
            )
        self._has_constant, self._const_loc = has_constant(x)

    def _drop_missing(self) -> linearmodels.typing.data.BoolArray:
        data = (self.dependent, self.exog, self.endog, self.instruments, self.weights)
        missing = cast(
            linearmodels.typing.data.BoolArray,
            npany(column_stack([dh.isnull for dh in data]), axis=1),
        )
        if npany(missing):
            if npall(missing):
                raise ValueError(
                    "All observations contain missing data. "
                    "Model cannot be estimated."
                )
            self.dependent.drop(missing)
            self.exog.drop(missing)
            self.endog.drop(missing)
            self.instruments.drop(missing)
            self.weights.drop(missing)

        missing_warning(missing, stacklevel=4)
        return missing

    def wresids(
        self, params: linearmodels.typing.data.Float64Array
    ) -> linearmodels.typing.data.Float64Array:
        """
        Compute weighted model residuals

        Parameters
        ----------
        params : ndarray
            Model parameters (nvar by 1)

        Returns
        -------
        ndarray
            Weighted model residuals

        Notes
        -----
        Uses weighted versions of data instead of raw data.  Identical to
        resids if all weights are unity.
        """
        return self._wy - self._wx @ params

    def resids(
        self, params: linearmodels.typing.data.Float64Array
    ) -> linearmodels.typing.data.Float64Array:
        """
        Compute model residuals

        Parameters
        ----------
        params : ndarray
            Model parameters (nvar by 1)

        Returns
        -------
        ndarray
            Model residuals
        """
        return self._y - self._x @ params

    @property
    def has_constant(self) -> bool:
        """Flag indicating the model includes a constant or equivalent"""
        return self._has_constant

    @property
    def isnull(self) -> linearmodels.typing.data.BoolArray:
        """Locations of observations with missing values"""
        return self._drop_locs

    @property
    def notnull(self) -> linearmodels.typing.data.BoolArray:
        """Locations of observations included in estimation"""
        return cast(linearmodels.typing.data.BoolArray, logical_not(self._drop_locs))

    def _f_statistic(
        self,
        params: linearmodels.typing.data.Float64Array,
        cov: linearmodels.typing.data.Float64Array,
        debiased: bool,
    ) -> WaldTestStatistic | InvalidTestStatistic:
        const_loc = find_constant(self._x)
        nobs, nvar = self._x.shape
        return f_statistic(params, cov, debiased, nobs - nvar, const_loc)

    def _post_estimation(
        self,
        params: linearmodels.typing.data.Float64Array,
        cov_estimator: CovarianceEstimator,
        cov_type: str,
    ) -> dict[str, Any]:
        columns = self._columns
        index = self._index
        eps = self.resids(params)
        y = self.dependent.pandas
        fitted = DataFrameWrapper(
            asarray(y) - eps, index=y.index, columns=["fitted_values"]
        )
        weps = self.wresids(params)
        cov = cov_estimator.cov
        debiased = cov_estimator.debiased

        residual_ss = squeeze(weps.T @ weps)

        w = self.weights.ndarray
        e = self._wy
        if self.has_constant:
            e = e - sqrt(self.weights.ndarray) * average(self._y, weights=w)

        total_ss = float(squeeze(e.T @ e))
        r2 = 1 - residual_ss / total_ss

        fstat = self._f_statistic(params, cov, debiased)
        out = {
            "params": Series(params.squeeze(), columns, name="parameter"),
            "eps": SeriesWrapper(eps.squeeze(), index=index, name="residual"),
            "weps": SeriesWrapper(
                weps.squeeze(), index=index, name="weighted residual"
            ),
            "cov": DataFrame(cov, columns=columns, index=columns),
            "s2": float(squeeze(cov_estimator.s2)),
            "debiased": debiased,
            "residual_ss": float(residual_ss),
            "total_ss": float(total_ss),
            "r2": float(squeeze(r2)),
            "fstat": fstat,
            "vars": columns,
            "instruments": self._instr_columns,
            "cov_config": cov_estimator.config,
            "cov_type": cov_type,
            "method": self._method,
            "cov_estimator": cov_estimator,
            "fitted": fitted,
            "original_index": self._original_index,
        }

        return out


class _IVLSModelBase(_IVModelBase):
    r"""
    Limited information ML and k-class estimation of IV models

    Parameters
    ----------
    dependent : array_like
        Endogenous variables (nobs by 1)
    exog : array_like
        Exogenous regressors  (nobs by nexog)
    endog : array_like
        Endogenous regressors (nobs by nendog)
    instruments : array_like
        Instrumental variables (nobs by ninstr)
    weights : array_like
        Observation weights used in estimation
    fuller : float
        Fuller's alpha to modify LIML estimator. Default returns unmodified
        LIML estimator.
    kappa : float
        Parameter value for k-class estimation.  If None, computed to
        produce LIML parameter estimate.

    Notes
    -----
    ``kappa`` and ``fuller`` should not be used simultaneously since Fuller's
    alpha applies an adjustment to ``kappa``, and so the same result can be
    computed using only ``kappa``. Fuller's alpha is used to adjust the
    LIML estimate of :math:`\kappa`, which is computed whenever ``kappa``
    is not provided.

    The LIML estimator is defined as

    .. math::

      \hat{\beta}_{\kappa} & =(X(I-\kappa M_{z})X)^{-1}X(I-\kappa M_{z})Y\\
      M_{z} & =I-P_{z}\\
      P_{z} & =Z(Z'Z)^{-1}Z'

    where :math:`Z` contains both the exogenous regressors and the instruments.
    :math:`\kappa` is estimated as part of the LIML estimator.

    When using Fuller's :math:`\alpha`, the value used is modified to

    .. math::

      \kappa-\alpha/(n-n_{instr})

    .. todo::

      * VCV: bootstrap

    See Also
    --------
    IV2SLS, IVGMM, IVGMMCUE
    """

    def __init__(
        self,
        dependent: IVDataLike,
        exog: IVDataLike | None,
        endog: IVDataLike | None,
        instruments: IVDataLike | None,
        *,
        weights: IVDataLike | None = None,
        fuller: linearmodels.typing.Numeric = 0,
        kappa: linearmodels.typing.OptionalNumeric = None,
    ):
        super().__init__(
            dependent,
            exog,
            endog,
            instruments,
            weights=weights,
            fuller=fuller,
            kappa=kappa,
        )

    @staticmethod
    def estimate_parameters(
        x: linearmodels.typing.data.Float64Array,
        y: linearmodels.typing.data.Float64Array,
        z: linearmodels.typing.data.Float64Array,
        kappa: linearmodels.typing.Numeric,
    ) -> linearmodels.typing.data.Float64Array:
        """
        Parameter estimation without error checking

        Parameters
        ----------
        x : ndarray
            Regressor matrix (nobs by nvar)
        y : ndarray
            Regressand matrix (nobs by 1)
        z : ndarray
            Instrument matrix (nobs by ninstr)
        kappa : scalar
            Parameter value for k-class estimator

        Returns
        -------
        ndarray
            Estimated parameters (nvar by 1)

        Notes
        -----
        Exposed as a static method to facilitate estimation with other data,
        e.g., bootstrapped samples.  Performs no error checking.
        """
        pinvz = pinv(z)
        p1 = (x.T @ x) * (1 - kappa) + kappa * ((x.T @ z) @ (pinvz @ x))
        p2 = (x.T @ y) * (1 - kappa) + kappa * ((x.T @ z) @ (pinvz @ y))
        return inv(p1) @ p2

    def _estimate_kappa(self) -> float:
        y, x, z = self._wy, self._wx, self._wz
        is_exog = self._regressor_is_exog
        e = c_[y, x[:, ~is_exog]]
        x1 = x[:, is_exog]

        ez = e - z @ (pinv(z) @ e)
        if x1.shape[1] == 0:  # No exogenous regressors
            ex1 = e
        else:
            ex1 = e - x1 @ (pinv(x1) @ e)

        vpmzv_sqinv = inv_sqrth(ez.T @ ez)
        q = vpmzv_sqinv @ (ex1.T @ ex1) @ vpmzv_sqinv
        return min(eigvalsh(q))

    def fit(
        self, *, cov_type: str = "robust", debiased: bool = False, **cov_config: Any
    ) -> OLSResults | IVResults:
        """
        Estimate model parameters

        Parameters
        ----------
        cov_type : str
            Name of covariance estimator to use. Supported covariance
            estimators are:

            * "unadjusted", "homoskedastic" - Classic homoskedastic inference
            * "robust", "heteroskedastic" - Heteroskedasticity robust inference
            * "kernel" - Heteroskedasticity and autocorrelation robust
              inference
            * "cluster" - One-way cluster dependent inference.
              Heteroskedasticity robust

        debiased : bool
            Flag indicating whether to debiased the covariance estimator using
            a degree of freedom adjustment.
        **cov_config
            Additional parameters to pass to covariance estimator. The list
            of optional parameters differ according to ``cov_type``. See
            the documentation of the alternative covariance estimators for
            the complete list of available commands.

        Returns
        -------
        IVResults
            Results container

        Notes
        -----
        Additional covariance parameters depend on specific covariance used.
        The see the docstring of specific covariance estimator for a list of
        supported options. Defaults are used if no covariance configuration
        is provided.

        See also
        --------
        linearmodels.iv.covariance.HomoskedasticCovariance
        linearmodels.iv.covariance.HeteroskedasticCovariance
        linearmodels.iv.covariance.KernelCovariance
        linearmodels.iv.covariance.ClusteredCovariance
        """
        wy, wx, wz = self._wy, self._wx, self._wz
        kappa = self._kappa

        try:
            liml_kappa: float = self._estimate_kappa()
        except Exception as exc:
            liml_kappa = nan
            if kappa is None:
                raise ValueError(
                    "Unable to estimate kappa. This is most likely occurs if the "
                    f"instrument matrix is rank deficient. The error raised when "
                    f"computing kappa was:\n\n{exc}"
                )
        if kappa is not None:
            est_kappa = kappa
        else:
            est_kappa = liml_kappa

        if self._fuller != 0:
            nobs, ninstr = wz.shape
            est_kappa -= self._fuller / (nobs - ninstr)

        params = self.estimate_parameters(wx, wy, wz, est_kappa)

        cov_estimator = COVARIANCE_ESTIMATORS[cov_type]
        cov_config["debiased"] = debiased
        cov_config["kappa"] = est_kappa
        cov_config_copy = {k: v for k, v in cov_config.items()}
        if "center" in cov_config_copy:
            del cov_config_copy["center"]
        cov_estimator_inst = cov_estimator(wx, wy, wz, params, **cov_config_copy)

        results = {"kappa": est_kappa, "liml_kappa": liml_kappa}
        pe = self._post_estimation(params, cov_estimator_inst, cov_type)
        results.update(pe)

        if self.endog.shape[1] == 0 and self.instruments.shape[1] == 0:
            return OLSResults(results, self)
        else:
            return IVResults(results, self)


[docs] class IVLIML(_IVLSModelBase): r""" Limited information ML and k-class estimation of IV models Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) endog : array_like Endogenous regressors (nobs by nendog) instruments : array_like Instrumental variables (nobs by ninstr) weights : array_like Observation weights used in estimation fuller : float Fuller's alpha to modify LIML estimator. Default returns unmodified LIML estimator. kappa : float Parameter value for k-class estimation. If None, computed to produce LIML parameter estimate. Notes ----- ``kappa`` and ``fuller`` should not be used simultaneously since Fuller's alpha applies an adjustment to ``kappa``, and so the same result can be computed using only ``kappa``. Fuller's alpha is used to adjust the LIML estimate of :math:`\kappa`, which is computed whenever ``kappa`` is not provided. The LIML estimator is defined as .. math:: \hat{\beta}_{\kappa} & =(X(I-\kappa M_{z})X)^{-1}X(I-\kappa M_{z})Y\\ M_{z} & =I-P_{z}\\ P_{z} & =Z(Z'Z)^{-1}Z' where :math:`Z` contains both the exogenous regressors and the instruments. :math:`\kappa` is estimated as part of the LIML estimator. When using Fuller's :math:`\alpha`, the value used is modified to .. math:: \kappa-\alpha/(n-n_{instr}) .. todo:: * VCV: bootstrap See Also -------- IV2SLS, IVGMM, IVGMMCUE """ def __init__( self, dependent: IVDataLike, exog: IVDataLike | None, endog: IVDataLike | None, instruments: IVDataLike | None, *, weights: IVDataLike | None = None, fuller: linearmodels.typing.Numeric = 0, kappa: linearmodels.typing.OptionalNumeric = None, ): super().__init__( dependent, exog, endog, instruments, weights=weights, fuller=fuller, kappa=kappa, )
[docs] @staticmethod def from_formula( formula: str, data: pandas.DataFrame, *, weights: IVDataLike | None = None, fuller: float = 0, kappa: linearmodels.typing.OptionalNumeric = None, ) -> IVLIML: """ Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation fuller : float Fuller's alpha to modify LIML estimator. Default returns unmodified LIML estimator. kappa : float Parameter value for k-class estimation. If not provided, computed to produce LIML parameter estimate. Returns ------- IVLIML Model instance Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using '1 +' if required. Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IVLIML >>> data = wage.load() >>> formula = "np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]" >>> mod = IVLIML.from_formula(formula, data) """ parser = IVFormulaParser(formula, data) dep, exog, endog, instr = parser.data mod: IVLIML = IVLIML( dep, exog, endog, instr, weights=weights, fuller=fuller, kappa=kappa ) mod.formula = formula return mod
[docs] class IV2SLS(_IVLSModelBase): r""" Estimation of IV models using two-stage least squares Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) endog : array_like Endogenous regressors (nobs by nendog) instruments : array_like Instrumental variables (nobs by ninstr) weights : array_like Observation weights used in estimation Notes ----- The 2SLS estimator is defined .. math:: \hat{\beta}_{2SLS} & =(X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'Y\\ & =(\hat{X}'\hat{X})^{-1}\hat{X}'Y\\ \hat{X} & =Z(Z'Z)^{-1}Z'X The 2SLS estimator is a special case of a k-class estimator with :math:`\kappa=1`, .. todo:: * VCV: bootstrap See Also -------- IVLIML, IVGMM, IVGMMCUE """ def __init__( self, dependent: IVDataLike, exog: IVDataLike | None, endog: IVDataLike | None, instruments: IVDataLike | None, *, weights: IVDataLike | None = None, ): self._method = "IV-2SLS" super().__init__( dependent, exog, endog, instruments, weights=weights, fuller=0, kappa=1 )
[docs] @staticmethod def from_formula( formula: str, data: pandas.DataFrame, *, weights: IVDataLike | None = None ) -> IV2SLS: """ Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation Returns ------- IV2SLS Model instance Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using "1 +" if required. Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IV2SLS >>> data = wage.load() >>> formula = 'np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]' >>> mod = IV2SLS.from_formula(formula, data) """ parser = IVFormulaParser(formula, data) dep, exog, endog, instr = parser.data mod = IV2SLS(dep, exog, endog, instr, weights=weights) mod.formula = formula return mod
class _IVGMMBase(_IVModelBase): r""" Estimation of IV models using the generalized method of moments (GMM) Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) endog : array_like Endogenous regressors (nobs by nendog) instruments : array_like Instrumental variables (nobs by ninstr) weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- Available GMM weight functions are: * "unadjusted", "homoskedastic" - Assumes moment conditions are homoskedastic * "robust", "heteroskedastic" - Allows for heteroskedasticity by not autocorrelation * "kernel" - Allows for heteroskedasticity and autocorrelation * "cluster" - Allows for one-way cluster dependence The estimator is defined as .. math:: \hat{\beta}_{gmm}=(X'ZW^{-1}Z'X)^{-1}X'ZW^{-1}Z'Y where :math:`W` is a positive definite weight matrix and :math:`Z` contains both the exogenous regressors and the instruments. .. todo:: * VCV: bootstrap See Also -------- IV2SLS, IVLIML, IVGMMCUE """ def __init__( self, dependent: IVDataLike, exog: IVDataLike | None, endog: IVDataLike | None, instruments: IVDataLike | None, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ): super().__init__(dependent, exog, endog, instruments, weights=weights) self._method = "IV-GMM" weight_matrix_estimator = WEIGHT_MATRICES[weight_type] self._weight = weight_matrix_estimator(**weight_config) self._weight_type = weight_type self._weight_config = self._weight.config def _gmm_post_estimation( self, params: linearmodels.typing.data.Float64Array, weight_mat: linearmodels.typing.data.Float64Array, iters: int, ) -> dict[str, Any]: """GMM-specific post-estimation results""" instr = self._instr_columns gmm_specific = { "weight_mat": DataFrame(weight_mat, columns=instr, index=instr), "weight_type": self._weight_type, "weight_config": self._weight_type, "iterations": iters, "j_stat": self._j_statistic(params, weight_mat), } return gmm_specific def _j_statistic( self, params: linearmodels.typing.data.Float64Array, weight_mat: linearmodels.typing.data.Float64Array, ) -> WaldTestStatistic: """J stat and test""" y, x, z = self._wy, self._wx, self._wz nobs, nvar, ninstr = y.shape[0], x.shape[1], z.shape[1] eps = y - x @ params g_bar = (z * eps).mean(0) stat = float(nobs * g_bar.T @ weight_mat @ g_bar.T) null = "Expected moment conditions are equal to 0" return WaldTestStatistic(stat, null, ninstr - nvar)
[docs] class IVGMM(_IVGMMBase): r""" Estimation of IV models using the generalized method of moments (GMM) Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) endog : array_like Endogenous regressors (nobs by nendog) instruments : array_like Instrumental variables (nobs by ninstr) weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- Available GMM weight functions are: * "unadjusted", "homoskedastic" - Assumes moment conditions are homoskedastic * "robust", "heteroskedastic" - Allows for heteroskedasticity by not autocorrelation * "kernel" - Allows for heteroskedasticity and autocorrelation * "cluster" - Allows for one-way cluster dependence The estimator is defined as .. math:: \hat{\beta}_{gmm}=(X'ZW^{-1}Z'X)^{-1}X'ZW^{-1}Z'Y where :math:`W` is a positive definite weight matrix and :math:`Z` contains both the exogenous regressors and the instruments. .. todo:: * VCV: bootstrap See Also -------- IV2SLS, IVLIML, IVGMMCUE """ def __init__( self, dependent: IVDataLike, exog: IVDataLike | None, endog: IVDataLike | None, instruments: IVDataLike | None, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ): super().__init__(dependent, exog, endog, instruments, weights=weights) self._method = "IV-GMM" weight_matrix_estimator = WEIGHT_MATRICES[weight_type] self._weight = weight_matrix_estimator(**weight_config) self._weight_type = weight_type self._weight_config = self._weight.config
[docs] @staticmethod def from_formula( formula: str, data: pandas.DataFrame, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ) -> IVGMM: """ Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using "1 +" if required. Returns ------- IVGMM Model instance Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IVGMM >>> data = wage.load() >>> formula = "np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]" >>> mod = IVGMM.from_formula(formula, data) """ mod = _gmm_model_from_formula( IVGMM, formula, data, weights, weight_type, **weight_config ) assert isinstance(mod, IVGMM) return mod
[docs] @staticmethod def estimate_parameters( x: linearmodels.typing.data.Float64Array, y: linearmodels.typing.data.Float64Array, z: linearmodels.typing.data.Float64Array, w: linearmodels.typing.data.Float64Array, ) -> linearmodels.typing.data.Float64Array: """ Parameters ---------- x : ndarray Regressor matrix (nobs by nvar) y : ndarray Regressand matrix (nobs by 1) z : ndarray Instrument matrix (nobs by ninstr) w : ndarray GMM weight matrix (ninstr by ninstr) Returns ------- ndarray Estimated parameters (nvar by 1) Notes ----- Exposed as a static method to facilitate estimation with other data, e.g., bootstrapped samples. Performs no error checking. """ xpz = x.T @ z zpy = z.T @ y return inv(xpz @ w @ xpz.T) @ (xpz @ w @ zpy)
[docs] def fit( self, *, iter_limit: int = 2, tol: float = 1e-4, initial_weight: linearmodels.typing.data.Float64Array | None = None, cov_type: str = "robust", debiased: bool = False, **cov_config: Any, ) -> OLSResults | IVGMMResults: """ Estimate model parameters Parameters ---------- iter_limit : int Maximum number of iterations. Default is 2, which produces two-step efficient GMM estimates. Larger values can be used to iterate between parameter estimation and optimal weight matrix estimation until convergence. tol : float Convergence criteria. Measured as covariance normalized change in parameters across iterations where the covariance estimator is based on the first step parameter estimates. initial_weight : numpy.ndarray Initial weighting matrix to use in the first step. If not specified, uses the average outer-product of the set containing the exogenous variables and instruments. cov_type : str Name of covariance estimator to use. Available covariance functions are: * "unadjusted", "homoskedastic" - Assumes moment conditions are homoskedastic * "robust", "heteroskedastic" - Allows for heteroskedasticity but not autocorrelation * "kernel" - Allows for heteroskedasticity and autocorrelation * "cluster" - Allows for one-way cluster dependence debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. **cov_config Additional parameters to pass to covariance estimator. Supported parameters depend on specific covariance structure assumed. See :class:`linearmodels.iv.gmm.IVGMMCovariance` for details on the available options. Defaults are used if no covariance configuration is provided. Returns ------- IVGMMResults Results container See also -------- linearmodels.iv.gmm.IVGMMCovariance """ wy, wx, wz = self._wy, self._wx, self._wz nobs = wy.shape[0] weight_matrix = self._weight.weight_matrix k_wz = wz.shape[1] if initial_weight is not None: initial_weight = asarray(initial_weight) if initial_weight.ndim != 2 or initial_weight.shape != (k_wz, k_wz): raise ValueError(f"initial_weight must be a {k_wz} by {k_wz} array") wmat = inv(wz.T @ wz / nobs) if initial_weight is None else initial_weight _params = params = self.estimate_parameters(wx, wy, wz, wmat) iters, norm = 1, 10 * tol + 1 vinv = eye(params.shape[0]) while iters < iter_limit and norm > tol: eps = wy - wx @ params wmat = inv(weight_matrix(wx, wz, eps)) params = self.estimate_parameters(wx, wy, wz, wmat) delta = params - _params if iters == 1: xpz = wx.T @ wz / nobs v = (xpz @ wmat @ xpz.T) / nobs vinv = inv(v) _params = params norm = float(squeeze(delta.T @ vinv @ delta)) iters += 1 cov_config["debiased"] = debiased cov_estimator = IVGMMCovariance( wx, wy, wz, params, wmat, cov_type, **cov_config ) results = self._post_estimation(params, cov_estimator, cov_type) gmm_pe = self._gmm_post_estimation(params, wmat, iters) results.update(gmm_pe) return IVGMMResults(results, self)
def _gmm_post_estimation( self, params: linearmodels.typing.data.Float64Array, weight_mat: linearmodels.typing.data.Float64Array, iters: int, ) -> dict[str, Any]: """GMM-specific post-estimation results""" instr = self._instr_columns gmm_specific = { "weight_mat": DataFrame(weight_mat, columns=instr, index=instr), "weight_type": self._weight_type, "weight_config": self._weight_type, "iterations": iters, "j_stat": self._j_statistic(params, weight_mat), } return gmm_specific
[docs] class IVGMMCUE(_IVGMMBase): r""" Estimation of IV models using continuously updating GMM Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) endog : array_like Endogenous regressors (nobs by nendog) instruments : array_like Instrumental variables (nobs by ninstr) weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Notes ----- Available weight functions are: * "unadjusted", "homoskedastic" - Assumes moment conditions are homoskedastic * "robust", "heteroskedastic" - Allows for heteroskedasticity by not autocorrelation * "kernel" - Allows for heteroskedasticity and autocorrelation * "cluster" - Allows for one-way cluster dependence In most circumstances, the ``center`` weight option should be ``True`` to avoid starting value dependence. .. math:: \hat{\beta}_{cue} & =\min_{\beta}\bar{g}(\beta)'W(\beta)^{-1}g(\beta)\\ g(\beta) & =n^{-1}\sum_{i=1}^{n}z_{i}(y_{i}-x_{i}\beta) where :math:`W(\beta)` is a weight matrix that depends on :math:`\beta` through :math:`\epsilon_i = y_i - x_i\beta`. See Also -------- IV2SLS, IVLIML, IVGMM """ def __init__( self, dependent: IVDataLike, exog: IVDataLike | None, endog: IVDataLike | None, instruments: IVDataLike | None, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ) -> None: self._method = "IV-GMM-CUE" super().__init__( dependent, exog, endog, instruments, weights=weights, weight_type=weight_type, **weight_config, ) if "center" not in weight_config: weight_config["center"] = True
[docs] @staticmethod def from_formula( formula: str, data: pandas.DataFrame, *, weights: IVDataLike | None = None, weight_type: str = "robust", **weight_config: Any, ) -> IVGMMCUE: """ Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Returns ------- IVGMMCUE Model instance Notes ----- The IV formula modifies the standard formula syntax to include a block of the form [endog ~ instruments] which is used to indicate the list of endogenous variables and instruments. The general structure is `dependent ~ exog [endog ~ instruments]` and it must be the case that the formula expressions constructed from blocks `dependent ~ exog endog` and `dependent ~ exog instruments` are both valid formulas. A constant must be explicitly included using "1 +" if required. Examples -------- >>> import numpy as np >>> from linearmodels.datasets import wage >>> from linearmodels.iv import IVGMMCUE >>> data = wage.load() >>> formula = "np.log(wage) ~ 1 + exper + exper ** 2 + brthord + [educ ~ sibs]" >>> mod = IVGMMCUE.from_formula(formula, data) """ mod = _gmm_model_from_formula( IVGMMCUE, formula, data, weights, weight_type, **weight_config ) assert isinstance(mod, IVGMMCUE) return mod
[docs] def j( self, params: linearmodels.typing.data.Float64Array, x: linearmodels.typing.data.Float64Array, y: linearmodels.typing.data.Float64Array, z: linearmodels.typing.data.Float64Array, ) -> float: r""" Optimization target Parameters ---------- params : ndarray Parameter vector (nvar) x : ndarray Regressor matrix (nobs by nvar) y : ndarray Regressand matrix (nobs by 1) z : ndarray Instrument matrix (nobs by ninstr) Returns ------- float GMM objective function, also known as the J statistic Notes ----- The GMM objective function is defined as .. math:: J(\beta) = \bar{g}(\beta)'W(\beta)^{-1}\bar{g}(\beta) where :math:`\bar{g}(\beta)` is the average of the moment conditions, :math:`z_i \hat{\epsilon}_i`, where :math:`\hat{\epsilon}_i = y_i - x_i\beta`. The weighting matrix is some estimator of the long-run variance of the moment conditions. Unlike tradition GMM, the weighting matrix is simultaneously computed with the moment conditions, and so has explicit dependence on :math:`\beta`. """ nobs = y.shape[0] weight_matrix = self._weight.weight_matrix eps = y - x @ params[:, None] w = inv(weight_matrix(x, z, eps)) g_bar = (z * eps).mean(0) return nobs * float(g_bar.T @ w @ g_bar.T)
[docs] def estimate_parameters( self, starting: linearmodels.typing.data.Float64Array, x: linearmodels.typing.data.Float64Array, y: linearmodels.typing.data.Float64Array, z: linearmodels.typing.data.Float64Array, display: bool = False, opt_options: dict[str, Any] | None = None, ) -> tuple[linearmodels.typing.data.Float64Array, int]: r""" Parameters ---------- starting : ndarray Starting values for the optimization x : ndarray Regressor matrix (nobs by nvar) y : ndarray Regressand matrix (nobs by 1) z : ndarray Instrument matrix (nobs by ninstr) display : bool Flag indicating whether to display iterative optimizer output opt_options : dict Dictionary containing additional keyword arguments to pass to scipy.optimize.minimize. Returns ------- ndarray Estimated parameters (nvar by 1) Notes ----- Exposed to facilitate estimation with other data, e.g., bootstrapped samples. Performs no error checking. See Also -------- scipy.optimize.minimize """ args = (x, y, z) if opt_options is None: opt_options = {} assert opt_options is not None options = {"disp": display} if "options" in opt_options: opt_options = opt_options.copy() options.update(opt_options.pop("options")) res = minimize(self.j, starting, args=args, options=options, **opt_options) return res.x[:, None], res.nit
[docs] def fit( self, *, starting: linearmodels.typing.data.Float64Array | pandas.Series | None = None, display: bool = False, cov_type: str = "robust", debiased: bool = False, opt_options: dict[str, Any] | None = None, **cov_config: Any, ) -> OLSResults | IVGMMResults: r""" Estimate model parameters Parameters ---------- starting : ndarray Starting values to use in optimization. If not provided, 2SLS estimates are used. display : bool Flag indicating whether to display optimization output cov_type : str Name of covariance estimator to use debiased : bool Flag indicating whether to debiased the covariance estimator using a degree of freedom adjustment. opt_options : dict Additional options to pass to scipy.optimize.minimize when optimizing the objective function. If not provided, defers to scipy to choose an appropriate optimizer. All minimize inputs except ``fun``, ``x0``, and ``args`` can be overridden. **cov_config Additional parameters to pass to covariance estimator. Supported parameters depend on specific covariance structure assumed. See :class:`linearmodels.iv.gmm.IVGMMCovariance` for details on the available options. Defaults are used if no covariance configuration is provided. Returns ------- IVGMMResults Results container Notes ----- Starting values are computed by IVGMM. See also -------- linearmodels.iv.gmm.IVGMMCovariance """ wy, wx, wz = self._wy, self._wx, self._wz weight_matrix = self._weight.weight_matrix if starting is None: exog = None if self.exog.shape[1] == 0 else self.exog endog = None if self.endog.shape[1] == 0 else self.endog instr = None if self.instruments.shape[1] == 0 else self.instruments res = IVGMM( self.dependent, exog, endog, instr, weights=self.weights, weight_type=self._weight_type, **self._weight_config, ).fit() starting = asarray(res.params) else: starting = asarray(starting) if len(starting) != self.exog.shape[1] + self.endog.shape[1]: raise ValueError( "starting does not have the correct number " "of values" ) params, iters = self.estimate_parameters( starting, wx, wy, wz, display, opt_options=opt_options ) eps = wy - wx @ params wmat = inv(weight_matrix(wx, wz, eps)) cov_config["debiased"] = debiased cov_estimator = IVGMMCovariance( wx, wy, wz, params, wmat, cov_type, **cov_config ) results = self._post_estimation(params, cov_estimator, cov_type) gmm_pe = self._gmm_post_estimation(params, wmat, iters) results.update(gmm_pe) return IVGMMResults(results, self)
[docs] class _OLS(IVLIML): """ Computes OLS estimates when required Private class used when model reduces to OLS. Should use the statsmodels version when neeeding a supported public API. Parameters ---------- dependent : array_like Endogenous variables (nobs by 1) exog : array_like Exogenous regressors (nobs by nexog) weights : array_like Observation weights used in estimation Notes ----- Uses IV2SLS internally by setting endog and instruments to None. Uses IVLIML with kappa=0 to estimate OLS models. See Also -------- statsmodels.regression.linear_model.OLS, statsmodels.regression.linear_model.GLS """ def __init__( self, dependent: IVDataLike, exog: IVDataLike, *, weights: IVDataLike | None = None, ): super().__init__(dependent, exog, None, None, weights=weights, kappa=0.0) self._result_container = OLSResults
def _gmm_model_from_formula( cls: type[IVGMM] | type[IVGMMCUE], formula: str, data: pandas.DataFrame, weights: IVDataLike | None, weight_type: str, **weight_config: Any, ) -> IVGMM | IVGMMCUE: """ Parameters ---------- formula : str Formula modified for the IV syntax described in the notes section data : DataFrame DataFrame containing the variables used in the formula weights : array_like Observation weights used in estimation weight_type : str Name of moment condition weight function to use in the GMM estimation **weight_config Additional keyword arguments to pass to the moment condition weight function Returns ------- {IVGMM, IVGMMCUE} Model instance """ parser = IVFormulaParser(formula, data, eval_env=3) dep, exog, endog, instr = parser.data mod = cls( dep, exog, endog, instr, weights=weights, weight_type=weight_type, **weight_config, ) mod.formula = formula return mod