linearmodels.iv.model.IVGMM¶
-
class linearmodels.iv.model.IVGMM(dependent: IVData | ndarray | DataArray | DataFrame | Series, exog: IVData | ndarray | DataArray | DataFrame | Series | None, endog: IVData | ndarray | DataArray | DataFrame | Series | None, instruments: IVData | ndarray | DataArray | DataFrame | Series | None, *, weights: IVData | ndarray | DataArray | DataFrame | Series | None =
None
, weight_type: str ='robust'
, **weight_config: Any)[source]¶ Estimation of IV models using the generalized method of moments (GMM)
- Parameters:¶
- dependent: IVData | ndarray | DataArray | DataFrame | Series¶
Endogenous variables (nobs by 1)
- exog: IVData | ndarray | DataArray | DataFrame | Series | None¶
Exogenous regressors (nobs by nexog)
- endog: IVData | ndarray | DataArray | DataFrame | Series | None¶
Endogenous regressors (nobs by nendog)
- instruments: IVData | ndarray | DataArray | DataFrame | Series | None¶
Instrumental variables (nobs by ninstr)
- weights: IVData | ndarray | DataArray | DataFrame | Series | None =
None
¶ Observation weights used in estimation
- weight_type: str =
'robust'
¶ Name of moment condition weight function to use in the GMM estimation
- **weight_config: Any¶
Additional keyword arguments to pass to the moment condition weight function
Notes
Available GMM weight functions are:
“unadjusted”, “homoskedastic” - Assumes moment conditions are homoskedastic
“robust”, “heteroskedastic” - Allows for heteroskedasticity by not autocorrelation
“kernel” - Allows for heteroskedasticity and autocorrelation
“cluster” - Allows for one-way cluster dependence
The estimator is defined as
\[\hat{\beta}_{gmm}=(X'ZW^{-1}Z'X)^{-1}X'ZW^{-1}Z'Y\]where \(W\) is a positive definite weight matrix and \(Z\) contains both the exogenous regressors and the instruments.
Todo
VCV: bootstrap
Methods
estimate_parameters
(x, y, z, w)fit
(*[, iter_limit, tol, initial_weight, ...])Estimate model parameters
from_formula
(formula, data, *[, weights, ...])predict
(params, *[, exog, endog, data, eval_env])Predict values for additional data
resids
(params)Compute model residuals
wresids
(params)Compute weighted model residuals
Properties
Formula used to create the model
Flag indicating the model includes a constant or equivalent
Locations of observations with missing values
Locations of observations included in estimation