linearmodels.iv.model.IVGMMCUE¶
-
class linearmodels.iv.model.IVGMMCUE(dependent: IVData | ndarray | DataArray | DataFrame | Series, exog: IVData | ndarray | DataArray | DataFrame | Series | None, endog: IVData | ndarray | DataArray | DataFrame | Series | None, instruments: IVData | ndarray | DataArray | DataFrame | Series | None, *, weights: IVData | ndarray | DataArray | DataFrame | Series | None =
None
, weight_type: str ='robust'
, **weight_config: Any)[source]¶ Estimation of IV models using continuously updating GMM
- Parameters:¶
- dependent: IVData | ndarray | DataArray | DataFrame | Series¶
Endogenous variables (nobs by 1)
- exog: IVData | ndarray | DataArray | DataFrame | Series | None¶
Exogenous regressors (nobs by nexog)
- endog: IVData | ndarray | DataArray | DataFrame | Series | None¶
Endogenous regressors (nobs by nendog)
- instruments: IVData | ndarray | DataArray | DataFrame | Series | None¶
Instrumental variables (nobs by ninstr)
- weights: IVData | ndarray | DataArray | DataFrame | Series | None =
None
¶ Observation weights used in estimation
- weight_type: str =
'robust'
¶ Name of moment condition weight function to use in the GMM estimation
- **weight_config: Any¶
Additional keyword arguments to pass to the moment condition weight function
Notes
Available weight functions are:
“unadjusted”, “homoskedastic” - Assumes moment conditions are homoskedastic
“robust”, “heteroskedastic” - Allows for heteroskedasticity by not autocorrelation
“kernel” - Allows for heteroskedasticity and autocorrelation
“cluster” - Allows for one-way cluster dependence
In most circumstances, the
center
weight option should beTrue
to avoid starting value dependence.\[\begin{split}\hat{\beta}_{cue} & =\min_{\beta}\bar{g}(\beta)'W(\beta)^{-1}g(\beta)\\ g(\beta) & =n^{-1}\sum_{i=1}^{n}z_{i}(y_{i}-x_{i}\beta)\end{split}\]where \(W(\beta)\) is a weight matrix that depends on \(\beta\) through \(\epsilon_i = y_i - x_i\beta\).
Methods
estimate_parameters
(starting, x, y, z[, ...])fit
(*[, starting, display, cov_type, ...])Estimate model parameters
from_formula
(formula, data, *[, weights, ...])j
(params, x, y, z)Optimization target
predict
(params, *[, exog, endog, data, eval_env])Predict values for additional data
resids
(params)Compute model residuals
wresids
(params)Compute weighted model residuals
Properties
Formula used to create the model
Flag indicating the model includes a constant or equivalent
Locations of observations with missing values
Locations of observations included in estimation