linearmodels.system.model.IV3SLS.fit¶
-
IV3SLS.fit(*, method: 'ols' | 'gls' | None =
None, full_cov: bool =True, iterate: bool =False, iter_limit: int =100, tol: float =1e-06, cov_type: str ='robust', **cov_config: bool) SystemResults¶ Estimate model parameters
- Parameters:¶
- method: 'ols' | 'gls' | None =
None¶ Estimation method. Default auto selects based on regressors, using OLS only if all regressors are identical. The other two arguments force the use of GLS or OLS.
- full_cov: bool =
True¶ Flag indicating whether to utilize information in correlations when estimating the model with GLS
- iterate: bool =
False¶ Flag indicating to iterate GLS until convergence of iter limit iterations have been completed
- iter_limit: int =
100¶ Maximum number of iterations for iterative GLS
- tol: float =
1e-06¶ Tolerance to use when checking for convergence in iterative GLS
- cov_type: str =
'robust'¶ Name of covariance estimator. Valid options are
”unadjusted”, “homoskedastic” - Classic covariance estimator
”robust”, “heteroskedastic” - Heteroskedasticity robust covariance estimator
”kernel” - Allows for heteroskedasticity and autocorrelation
”clustered” - Allows for 1 and 2-way clustering of errors (Rogers).
- **cov_config: bool¶
Additional parameters to pass to covariance estimator. All estimators support debiased which employs a small-sample adjustment
- method: 'ols' | 'gls' | None =
- Returns:¶
results – Estimation results
- Return type:¶