linearmodels.system.model.IV3SLS.fit¶
-
IV3SLS.fit(*, method: 'ols' | 'gls' | None | None =
None
, full_cov: bool =True
, iterate: bool =False
, iter_limit: int =100
, tol: float =1e-06
, cov_type: str ='robust'
, **cov_config: bool) SystemResults ¶ Estimate model parameters
- Parameters:¶
- method: 'ols' | 'gls' | None | None =
None
¶ Estimation method. Default auto selects based on regressors, using OLS only if all regressors are identical. The other two arguments force the use of GLS or OLS.
- full_cov: bool =
True
¶ Flag indicating whether to utilize information in correlations when estimating the model with GLS
- iterate: bool =
False
¶ Flag indicating to iterate GLS until convergence of iter limit iterations have been completed
- iter_limit: int =
100
¶ Maximum number of iterations for iterative GLS
- tol: float =
1e-06
¶ Tolerance to use when checking for convergence in iterative GLS
- cov_type: str =
'robust'
¶ Name of covariance estimator. Valid options are
”unadjusted”, “homoskedastic” - Classic covariance estimator
”robust”, “heteroskedastic” - Heteroskedasticity robust covariance estimator
”kernel” - Allows for heteroskedasticity and autocorrelation
”clustered” - Allows for 1 and 2-way clustering of errors (Rogers).
- **cov_config
Additional parameters to pass to covariance estimator. All estimators support debiased which employs a small-sample adjustment
- method: 'ols' | 'gls' | None | None =
- Returns:¶
results – Estimation results
- Return type:¶