arch.univariate.base.ARCHModelFixedResult¶
- class arch.univariate.base.ARCHModelFixedResult(params: ndarray[Any, dtype[float64]], resid: ndarray[Any, dtype[float64]], volatility: ndarray[Any, dtype[float64]], dep_var: Series, names: list[str], loglikelihood: float, is_pandas: bool, model: ARCHModel)[source]¶
Results for fixed parameters for an ARCHModel model
- Parameters:¶
- params: ndarray[Any, dtype[float64]]¶
Estimated parameters
- resid: ndarray[Any, dtype[float64]]¶
Residuals from model. Residuals have same shape as original data and contain nan-values in locations not used in estimation
- volatility: ndarray[Any, dtype[float64]]¶
Conditional volatility from model
- dep_var: Series¶
Dependent variable
- names: list[str]¶
Model parameter names
- loglikelihood: float¶
Loglikelihood at specified parameters
- is_pandas: bool¶
Whether the original input was pandas
- model: ARCHModel¶
The model object used to estimate the parameters
Methods
arch_lm_test
([lags, standardized])ARCH LM test for conditional heteroskedasticity
forecast
([params, horizon, start, align, ...])Construct forecasts from estimated model
hedgehog_plot
([params, horizon, step, ...])Plot forecasts from estimated model
plot
([annualize, scale])Plot standardized residuals and conditional volatility
summary
()Constructs a summary of the results from a fit model.
Properties
Akaike Information Criteria
Schwarz/Bayesian Information Criteria
Estimated conditional volatility
Model loglikelihood
Model instance used to produce the fit
Number of data points used to estimate model
Number of parameters in model
Model Parameters
Model residuals
Residuals standardized by conditional volatility