Skip to content
logo
linearmodels v6.2 (+19)
linearmodels.iv.model.IVGMM.wresids
Initializing search
    linearmodels
    linearmodels
    • Instrumental Variable Estimation
      • Introduction
      • Basic Examples
      • Further Examples
      • Using formulas to specify models
      • Absorbing Regression
      • Module Reference
        • Instrumental Variable Estimation
          • linearmodels.iv.model.IV2SLS
          • linearmodels.iv.model.IVLIML
          • linearmodels.iv.model.IVGMM
            • C linearmodels.iv.model.IVGMM
              • linearmodels.iv.model.IVGMM.estimate_parameters
              • linearmodels.iv.model.IVGMM.fit
              • linearmodels.iv.model.IVGMM.from_formula
              • linearmodels.iv.model.IVGMM.predict
              • linearmodels.iv.model.IVGMM.resids
              • linearmodels.iv.model.IVGMM.wresids
                • M IVGMM.wresids
                  • Parameters
                    • p params
                  • Returns
                  • Return type
              • linearmodels.iv.model.IVGMM.formula
              • linearmodels.iv.model.IVGMM.has_constant
              • linearmodels.iv.model.IVGMM.isnull
              • linearmodels.iv.model.IVGMM.notnull
          • linearmodels.iv.model.IVGMMCUE
          • linearmodels.iv.model._OLS
        • Absorbing Least Squares
        • Estimation Results
        • Instrumental Variable Covariance Estimation
        • GMM Weight and Covariance Estimation
        • IV Data Structures
      • Formulas and Mathematical Detail
    • Panel Data Model Estimation
    • Linear Factor Models for Asset Pricing
    • System Regression Models
    • Utilities
    • Compatibility
    • Type Aliases
    • Module Plans
    • Contributing
    • Change Log
    • References
    • M IVGMM.wresids
      • Parameters
        • p params
      • Returns
      • Return type

    linearmodels.iv.model.IVGMM.wresids¶

    IVGMM.wresids(params: ndarray[tuple[int, ...], dtype[float64]]) → ndarray[tuple[int, ...], dtype[float64]]¶

    Compute weighted model residuals

    Parameters:¶
    params: ndarray[tuple[int, ...], dtype[float64]]¶

    Model parameters (nvar by 1)

    Returns:¶

    Weighted model residuals

    Return type:¶

    numpy.ndarray

    Notes

    Uses weighted versions of data instead of raw data. Identical to resids if all weights are unity.

    © Copyright 2021, Kevin Sheppard.
    Created using Sphinx 8.1.3. and Sphinx-Immaterial