arch.univariate.APARCH¶
-
class arch.univariate.APARCH(p: int =
1
, o: int =1
, q: int =1
, delta: float | None =None
, common_asym: bool =False
)[source]¶ Asymmetric Power ARCH (APARCH) volatility process
- Parameters:¶
- p: int =
1
¶ Order of the symmetric innovation. Must satisfy p>=o.
- o: int =
1
¶ Order of the asymmetric innovation. Must satisfy o<=p.
- q: int =
1
¶ Order of the lagged (transformed) conditional variance
- delta: float | None =
None
¶ Value to use for a fixed delta in the APARCH model. If not provided, the value of delta is jointly estimated with other model parameters. User provided delta is restricted to lie in (0.05, 4.0).
- common_asym: bool =
False
¶ Restrict all asymmetry terms to share the same asymmetry parameter. If False (default), then there are no restrictions on the
o
asymmetry parameters.
- p: int =
Examples
>>> from arch.univariate import APARCH
Symmetric Power ARCH(1,1)
>>> aparch = APARCH(p=1, q=1)
Standard APARCH process
>>> aparch = APARCH(p=1, o=1, q=1)
Fixed power parameters
>>> aparch = APARCH(p=1, o=1, q=1, delta=1.3)
Notes
In this class of processes, the variance dynamics are
\[\sigma_{t}^{\delta}=\omega +\sum_{i=1}^{p}\alpha_{i} \left(\left|\epsilon_{t-i}\right| -\gamma_{i}I_{[o\geq i]}\epsilon_{t-i}\right)^{\delta} +\sum_{k=1}^{q}\beta_{k}\sigma_{t-k}^{\delta}\]If
common_asym
isTrue
, then all of \(\gamma_i\) are restricted to have a common value.Methods
backcast
(resids)Construct values for backcasting to start the recursion
backcast_transform
(backcast)Transformation to apply to user-provided backcast values
bounds
(resids)Returns bounds for parameters
compute_variance
(parameters, resids, sigma2, ...)Compute the variance for the ARCH model
Construct parameter constraints arrays for parameter estimation
forecast
(parameters, resids, backcast, ...)Forecast volatility from the model
Names of model parameters
simulate
(parameters, nobs, rng[, burn, ...])Simulate data from the model
starting_values
(resids)Returns starting values for the ARCH model
update
(index, parameters, resids, sigma2, ...)Compute the variance for a single observation
variance_bounds
(resids[, power])Construct loose bounds for conditional variances.
Properties
The value of delta in the model.
The value of delta in the model.
The name of the volatility process
The number of parameters in the model
Index to use to start variance subarray selection
Index to use to stop variance subarray selection
Flag indicating that the volatility process supports update
Get the volatility updater associated with the volatility process