arch.univariate.APARCH

class arch.univariate.APARCH(p: int = 1, o: int = 1, q: int = 1, delta: float | None = None, common_asym: bool = False)[source]

Asymmetric Power ARCH (APARCH) volatility process

Parameters:
p: int = 1

Order of the symmetric innovation. Must satisfy p>=o.

o: int = 1

Order of the asymmetric innovation. Must satisfy o<=p.

q: int = 1

Order of the lagged (transformed) conditional variance

delta: float | None = None

Value to use for a fixed delta in the APARCH model. If not provided, the value of delta is jointly estimated with other model parameters. User provided delta is restricted to lie in (0.05, 4.0).

common_asym: bool = False

Restrict all asymmetry terms to share the same asymmetry parameter. If False (default), then there are no restrictions on the o asymmetry parameters.

Examples

>>> from arch.univariate import APARCH

Symmetric Power ARCH(1,1)

>>> aparch = APARCH(p=1, q=1)

Standard APARCH process

>>> aparch = APARCH(p=1, o=1, q=1)

Fixed power parameters

>>> aparch = APARCH(p=1, o=1, q=1, delta=1.3)

Notes

In this class of processes, the variance dynamics are

\[\sigma_{t}^{\delta}=\omega +\sum_{i=1}^{p}\alpha_{i} \left(\left|\epsilon_{t-i}\right| -\gamma_{i}I_{[o\geq i]}\epsilon_{t-i}\right)^{\delta} +\sum_{k=1}^{q}\beta_{k}\sigma_{t-k}^{\delta}\]

If common_asym is True, then all of \(\gamma_i\) are restricted to have a common value.

Methods

backcast(resids)

Construct values for backcasting to start the recursion

backcast_transform(backcast)

Transformation to apply to user-provided backcast values

bounds(resids)

Returns bounds for parameters

compute_variance(parameters, resids, sigma2, ...)

Compute the variance for the ARCH model

constraints()

Construct parameter constraints arrays for parameter estimation

forecast(parameters, resids, backcast, ...)

Forecast volatility from the model

parameter_names()

Names of model parameters

simulate(parameters, nobs, rng[, burn, ...])

Simulate data from the model

starting_values(resids)

Returns starting values for the ARCH model

update(index, parameters, resids, sigma2, ...)

Compute the variance for a single observation

variance_bounds(resids[, power])

Construct loose bounds for conditional variances.

Properties

common_asym

The value of delta in the model.

delta

The value of delta in the model.

name

The name of the volatility process

num_params

The number of parameters in the model

start

Index to use to start variance subarray selection

stop

Index to use to stop variance subarray selection

updateable

Flag indicating that the volatility process supports update

volatility_updater

Get the volatility updater associated with the volatility process