arch.univariate.MIDASHyperbolic¶
-
class arch.univariate.MIDASHyperbolic(m: int =
22
, asym: bool =False
)[source]¶ MIDAS Hyperbolic ARCH process
- Parameters:¶
Examples
>>> from arch.univariate import MIDASHyperbolic
22-lag MIDAS Hyperbolic process
>>> harch = MIDASHyperbolic()
Longer 66-period lag
>>> harch = MIDASHyperbolic(m=66)
Asymmetric MIDAS Hyperbolic process
>>> harch = MIDASHyperbolic(asym=True)
Notes
In a MIDAS Hyperbolic process, the variance evolves according to
\[\sigma_{t}^{2}=\omega+ \sum_{i=1}^{m}\left(\alpha+\gamma I\left[\epsilon_{t-j}<0\right]\right) \phi_{i}(\theta)\epsilon_{t-i}^{2}\]where
\[\phi_{i}(\theta) \propto \Gamma(i+\theta)/(\Gamma(i+1)\Gamma(\theta))\]where \(\Gamma\) is the gamma function. \(\{\phi_i(\theta)\}\) is normalized so that \(\sum \phi_i(\theta)=1\). See [1] and [2] for further details.
References
Methods
backcast
(resids)Construct values for backcasting to start the recursion
backcast_transform
(backcast)Transformation to apply to user-provided backcast values
bounds
(resids)Returns bounds for parameters
compute_variance
(parameters, resids, sigma2, ...)Compute the variance for the ARCH model
Constraints
forecast
(parameters, resids, backcast, ...)Forecast volatility from the model
Names of model parameters
simulate
(parameters, nobs, rng[, burn, ...])Simulate data from the model
starting_values
(resids)Returns starting values for the ARCH model
update
(index, parameters, resids, sigma2, ...)Compute the variance for a single observation
variance_bounds
(resids[, power])Construct loose bounds for conditional variances.
Properties
The name of the volatility process
The number of parameters in the model
Index to use to start variance subarray selection
Index to use to stop variance subarray selection
Flag indicating that the volatility process supports update
Get the volatility updater associated with the volatility process