Skip to content
logo
arch v7.2.1 (+35)
arch.univariate.HARCH.backcast_transform
Initializing search
    arch
    arch
    • Univariate Volatility Models
      • Introduction
      • Examples
      • Forecasting
      • Volatility Forecasting
      • Value-at-Risk Forecasting
      • Forecasting Scenarios
      • Forecasting with Exogenous Variables
      • Mean Models
      • Volatility Processes
        • arch.univariate.ConstantVariance
        • arch.univariate.GARCH
        • arch.univariate.FIGARCH
        • arch.univariate.EGARCH
        • arch.univariate.HARCH
          • C arch.univariate.HARCH
            • arch.univariate.HARCH.backcast
            • arch.univariate.HARCH.backcast_transform
              • M HARCH.backcast_transform
                • Parameters
                  • p backcast
                • Returns
                • Return type
            • arch.univariate.HARCH.bounds
            • arch.univariate.HARCH.compute_variance
            • arch.univariate.HARCH.constraints
            • arch.univariate.HARCH.forecast
            • arch.univariate.HARCH.parameter_names
            • arch.univariate.HARCH.simulate
            • arch.univariate.HARCH.starting_values
            • arch.univariate.HARCH.update
            • arch.univariate.HARCH.variance_bounds
            • arch.univariate.HARCH.name
            • arch.univariate.HARCH.num_params
            • arch.univariate.HARCH.start
            • arch.univariate.HARCH.stop
            • arch.univariate.HARCH.updateable
            • arch.univariate.HARCH.volatility_updater
        • arch.univariate.MIDASHyperbolic
        • arch.univariate.ARCH
        • arch.univariate.APARCH
        • Parameterless Variance Processes
        • FixedVariance
        • Writing New Volatility Processes
      • Using the Fixed Variance Process
      • Distributions
      • Results
      • Utilities
      • Background and References
    • Bootstrapping
    • Multiple Comparison Problems
    • Unit Root Testing
    • Cointegration Analysis
    • Long-run Covariance Estimation
    • API Reference
    • Common Type Definitions
    • Change Log
    • M HARCH.backcast_transform
      • Parameters
        • p backcast
      • Returns
      • Return type

    arch.univariate.HARCH.backcast_transform¶

    HARCH.backcast_transform(backcast: float | ndarray[tuple[int], dtype[float64]]) → float | ndarray[tuple[int], dtype[float64]]¶

    Transformation to apply to user-provided backcast values

    Parameters:¶
    backcast: float | ndarray[tuple[int], dtype[float64]]¶

    User-provided backcast that approximates sigma2[0].

    Returns:¶

    backcast – Backcast transformed to the model-appropriate scale

    Return type:¶

    {float, ndarray}

    © Copyright 2021, Kevin Sheppard.
    Created using Sphinx 8.1.3. and Sphinx-Immaterial