arch.univariate.base.ARCHModelFixedResult¶
- class arch.univariate.base.ARCHModelFixedResult(params: ndarray[tuple[int], dtype[float64]], resid: ndarray[tuple[int], dtype[float64]], volatility: ndarray[tuple[int], dtype[float64]], dep_var: Series, names: list[str], loglikelihood: float, is_pandas: bool, model: ARCHModel)[source]¶
- Results for fixed parameters for an ARCHModel model - Parameters:¶
- params: ndarray[tuple[int], dtype[float64]]¶
- Estimated parameters 
- resid: ndarray[tuple[int], dtype[float64]]¶
- Residuals from model. Residuals have same shape as original data and contain nan-values in locations not used in estimation 
- volatility: ndarray[tuple[int], dtype[float64]]¶
- Conditional volatility from model 
- dep_var: Series¶
- Dependent variable 
- names: list[str]¶
- Model parameter names 
- loglikelihood: float¶
- Loglikelihood at specified parameters 
- is_pandas: bool¶
- Whether the original input was pandas 
- model: ARCHModel¶
- The model object used to estimate the parameters 
 
 - Methods - arch_lm_test([lags, standardized])- ARCH LM test for conditional heteroskedasticity - forecast([params, horizon, start, align, ...])- Construct forecasts from estimated model - hedgehog_plot([params, horizon, step, ...])- Plot forecasts from estimated model - plot([annualize, scale])- Plot standardized residuals and conditional volatility - summary()- Constructs a summary of the results from a fit model. - Properties - Akaike Information Criteria - Schwarz/Bayesian Information Criteria - Estimated conditional volatility - Model loglikelihood - Model instance used to produce the fit - Number of data points used to estimate model - Number of parameters in model - Model Parameters - Model residuals - Residuals standardized by conditional volatility