arch.univariate.base.ARCHModelResult¶
- class arch.univariate.base.ARCHModelResult(params: ndarray[Any, dtype[float64]], param_cov: ndarray[Any, dtype[float64]] | None, r2: float, resid: ndarray[Any, dtype[float64]], volatility: ndarray[Any, dtype[float64]], cov_type: str, dep_var: Series, names: list[str], loglikelihood: float, is_pandas: bool, optim_output: OptimizeResult, fit_start: int, fit_stop: int, model: ARCHModel)[source]¶
Results from estimation of an ARCHModel model
- Parameters:¶
- params: ndarray[Any, dtype[float64]]¶
Estimated parameters
- param_cov: ndarray[Any, dtype[float64]] | None¶
Estimated variance-covariance matrix of params. If none, calls method to compute variance from model when parameter covariance is first used from result
- r2: float¶
Model R-squared
- resid: ndarray[Any, dtype[float64]]¶
Residuals from model. Residuals have same shape as original data and contain nan-values in locations not used in estimation
- volatility: ndarray[Any, dtype[float64]]¶
Conditional volatility from model
- cov_type: str¶
String describing the covariance estimator used
- dep_var: Series¶
Dependent variable
- names: list[str]¶
Model parameter names
- loglikelihood: float¶
Loglikelihood at estimated parameters
- is_pandas: bool¶
Whether the original input was pandas
- optim_output: OptimizeResult¶
Result of log-likelihood optimization
- fit_start: int¶
Integer index of the first observation used to fit the model
- fit_stop: int¶
Integer index of the last observation used to fit the model using slice notation fit_start:fit_stop
- model: ARCHModel¶
The model object used to estimate the parameters
Methods
arch_lm_test
([lags, standardized])ARCH LM test for conditional heteroskedasticity
conf_int
([alpha])Parameter confidence intervals
forecast
([params, horizon, start, align, ...])Construct forecasts from estimated model
hedgehog_plot
([params, horizon, step, ...])Plot forecasts from estimated model
plot
([annualize, scale])Plot standardized residuals and conditional volatility
summary
()Constructs a summary of the results from a fit model.
Properties
Akaike Information Criteria
Schwarz/Bayesian Information Criteria
Estimated conditional volatility
scipy.optimize.minimize result flag
Start of sample used to estimate parameters
End of sample used to estimate parameters
Model loglikelihood
Model instance used to produce the fit
Number of data points used to estimate model
Number of parameters in model
Information about the convergence of the loglikelihood optimization
Parameter covariance
Model Parameters
Array of p-values for the t-statistics
Model residuals
R-squared
Degree of freedom adjusted R-squared
The scale applied to the original data before estimating the model.
Array of parameter standard errors
Residuals standardized by conditional volatility
Array of t-statistics testing the null that the coefficient are 0